-
Notifications
You must be signed in to change notification settings - Fork 39
/
Copy patheval_instructir.py
204 lines (154 loc) · 5.98 KB
/
eval_instructir.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
import torch
from torch import nn
import torch.nn.functional as F
from torch.utils.data import DataLoader, Dataset
import torchvision
import torchvision.transforms.functional as TF
import json
import os
from PIL import Image
import numpy as np
import matplotlib.pyplot as plt
import yaml
import random
import gc
from utils import *
from models import instructir
from text.models import LanguageModel, LMHead
from test import test_model
def seed_everything(SEED=42):
random.seed(SEED)
np.random.seed(SEED)
torch.manual_seed(SEED)
torch.cuda.manual_seed(SEED)
torch.cuda.manual_seed_all(SEED)
torch.backends.cudnn.benchmark = True
if __name__=="__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--config', type=str, default='configs/eval5d.yml', help='Path to config file')
parser.add_argument('--model', type=str, default="models/im_instructir-7d.pt", help='Path to the image model weights')
parser.add_argument('--lm', type=str, default="models/lm_instructir-7d.pt", help='Path to the language model weights')
parser.add_argument('--promptify', type=str, default="simple_augment")
parser.add_argument('--device', type=int, default=0, help="GPU device")
parser.add_argument('--debug', action='store_true', help="Debug mode")
parser.add_argument('--save', type=str, default='results/', help="Path to save the resultant images")
args = parser.parse_args()
SEED=42
seed_everything(SEED=SEED)
torch.backends.cudnn.deterministic = True
GPU = args.device
DEBUG = args.debug
MODEL_NAME = args.model
CONFIG = args.config
LM_MODEL = args.lm
SAVE_PATH = args.save
print ('CUDA GPU available: ', torch.cuda.is_available())
torch.cuda.set_device(f'cuda:{GPU}')
device = torch.device(f'cuda:{GPU}' if torch.cuda.is_available() else "cpu")
print ('CUDA visible devices: ' + str(torch.cuda.device_count()))
print ('CUDA current device: ', torch.cuda.current_device(), torch.cuda.get_device_name(torch.cuda.current_device()))
# parse config file
with open(os.path.join(CONFIG), "r") as f:
config = yaml.safe_load(f)
cfg = dict2namespace(config)
print (20*"****")
print ("EVALUATION")
print (MODEL_NAME, LM_MODEL, device, DEBUG, CONFIG, args.promptify)
print (20*"****")
################### TESTING DATASET
TESTSETS = []
dn_testsets = []
rain_testsets = []
# Denoising
try:
for testset in cfg.test.dn_datasets:
for sigma in cfg.test.dn_sigmas:
noisy_testpath = os.path.join(cfg.test.dn_datapath, testset+ f"_{sigma}")
clean_testpath = os.path.join(cfg.test.dn_datapath, testset)
#print (clean_testpath, noisy_testpath)
dn_testsets.append([clean_testpath, noisy_testpath])
except:
dn_testsets = []
# RAIN
try:
for noisy_testpath, clean_testpath in zip(cfg.test.rain_inputs, cfg.test.rain_targets):
rain_testsets.append([clean_testpath, noisy_testpath])
except:
rain_testsets = []
# HAZE
try:
haze_testsets = [[cfg.test.haze_targets, cfg.test.haze_inputs]]
except:
haze_testsets = []
# BLUR
try:
blur_testsets = [[cfg.test.gopro_targets, cfg.test.gopro_inputs]]
except:
blur_testsets = []
# LOL
try:
lol_testsets = [[cfg.test.lol_targets, cfg.test.lol_inputs]]
except:
lol_testsets = []
# MIT5K
try:
mit_testsets = [[cfg.test.mit_targets, cfg.test.mit_inputs]]
except:
mit_testsets = []
TESTSETS += dn_testsets
TESTSETS += rain_testsets
TESTSETS += haze_testsets
TESTSETS += blur_testsets
TESTSETS += lol_testsets
TESTSETS += mit_testsets
# print ("Tests:", TESTSETS)
print ("TOTAL TESTSET:", len(TESTSETS))
print (20 * "----")
################### RESTORATION MODEL
print ("Creating InstructIR")
model = instructir.create_model(input_channels =cfg.model.in_ch, width=cfg.model.width, enc_blks = cfg.model.enc_blks,
middle_blk_num = cfg.model.middle_blk_num, dec_blks = cfg.model.dec_blks, txtdim=cfg.model.textdim)
################### LOAD IMAGE MODEL
assert MODEL_NAME, "Model weights required for evaluation"
print ("IMAGE MODEL CKPT:", MODEL_NAME)
model.load_state_dict(torch.load(MODEL_NAME), strict=True)
model = model.to(device)
nparams = count_params (model)
print ("Loaded weights!", nparams / 1e6)
################### LANGUAGE MODEL
try:
PROMPT_DB = cfg.llm.text_db
except:
PROMPT_DB = None
if cfg.model.use_text:
os.environ["TOKENIZERS_PARALLELISM"] = "false"
# Initialize the LanguageModel class
LMODEL = cfg.llm.model
language_model = LanguageModel(model=LMODEL)
lm_head = LMHead(embedding_dim=cfg.llm.model_dim, hidden_dim=cfg.llm.embd_dim, num_classes=cfg.llm.nclasses)
lm_head = lm_head.to(device)
lm_nparams = count_params (lm_head)
print ("LMHEAD MODEL CKPT:", LM_MODEL)
lm_head.load_state_dict(torch.load(LM_MODEL), strict=True)
print ("Loaded weights!")
else:
LMODEL = None
language_model = None
lm_head = None
lm_nparams = 0
print (20 * "----")
################### TESTING !!
from datasets import RefDegImage, augment_prompt, create_testsets
if args.promptify == "simple_augment":
promptify = augment_prompt
elif args.promptify == "chatgpt":
prompts = json.load(open(cfg.llm.text_db))
def promptify(deg):
return np.random.choice(prompts[deg])
else:
def promptify(deg):
return args.promptify
torch.cuda.empty_cache()
torch.cuda.reset_peak_memory_stats()
test_datasets = create_testsets(TESTSETS, debug=True)
test_model (model, language_model, lm_head, test_datasets, device, promptify, savepath=SAVE_PATH)