-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathlm_saliency.py
213 lines (180 loc) · 7.73 KB
/
lm_saliency.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
# This code was adapted from the repository https://github.com/kayoyin/interpret-lm by Kayo Yin.
import argparse, json
import random
import torch
import numpy as np
from transformers import (
WEIGHTS_NAME,
GPT2Config,
GPT2Tokenizer,
GPT2LMHeadModel,
GPTNeoForCausalLM,
)
import matplotlib as mpl
import matplotlib.pyplot as plt
plt.rcParams['figure.figsize'] = [10, 10]
config = GPT2Config.from_pretrained("gpt2")
VOCAB_SIZE = config.vocab_size
def model_preds(model, input_ids, input_mask, pos, tokenizer, foils=None, k=10, verbose=False):
# Obtain model's top predictions for given input
input_ids = torch.tensor(input_ids, dtype=torch.long).to(model.device)
input_mask = torch.tensor(input_mask, dtype=torch.long).to(model.device)
softmax = torch.nn.Softmax(dim=0)
A = model(input_ids[:, :pos], attention_mask=input_mask[:, :pos])
probs = softmax(A.logits[0][pos-1])
top_preds = probs.topk(k)
if verbose:
if foils:
for foil in foils:
print("Contrastive loss: ", A.logits[0][pos-1][input_ids[0, pos]] - A.logits[0][pos-1][foil])
print(f"{np.round(probs[foil].item(), 3)}: {tokenizer.decode(foil)}")
print("Top model predictions:")
for p,i in zip(top_preds.values, top_preds.indices):
print(f"{np.round(p.item(), 3)}: {tokenizer.decode(i)}")
return top_preds.indices
# Adapted from AllenNLP Interpret and Han et al. 2020
def register_embedding_list_hook(model, embeddings_list):
def forward_hook(module, inputs, output):
embeddings_list.append(output.squeeze(0).clone().cpu().detach().numpy())
if model.config.model_type == 'opt':
embedding_layer = model.model.decoder.embed_tokens
elif model.config.model_type == 'bloom':
embedding_layer = model.transformer.word_embeddings
else:
embedding_layer = model.transformer.wte
handle = embedding_layer.register_forward_hook(forward_hook)
return handle
def register_embedding_gradient_hooks(model, embeddings_gradients):
def hook_layers(module, grad_in, grad_out):
embeddings_gradients.append(grad_out[0].detach().cpu().numpy())
if model.config.model_type == 'opt':
embedding_layer = model.model.decoder.embed_tokens
elif model.config.model_type == 'bloom':
embedding_layer = model.transformer.word_embeddings
else:
embedding_layer = model.transformer.wte
hook = embedding_layer.register_backward_hook(hook_layers)
return hook
def saliency(model, input_ids, input_mask, batch=0, correct=None, foil=None):
# Get model gradients and input embeddings
torch.enable_grad()
model.eval()
embeddings_list = []
handle = register_embedding_list_hook(model, embeddings_list)
embeddings_gradients = []
hook = register_embedding_gradient_hooks(model, embeddings_gradients)
if correct is None:
correct = input_ids[-1]
input_ids = input_ids[:-1]
input_mask = input_mask[:-1]
input_ids = torch.tensor(input_ids, dtype=torch.long).to(model.device)
input_mask = torch.tensor(input_mask, dtype=torch.long).to(model.device)
model.zero_grad()
if model.config.model_type == 'opt' or model.config.model_type == 'bloom':
A = model(input_ids.unsqueeze(0), attention_mask=input_mask.unsqueeze(0))
else:
A = model(input_ids, attention_mask=input_mask)
if foil is not None and correct != foil:
if model.config.model_type == 'opt' or model.config.model_type == 'bloom':
(A.logits.squeeze()[-1][correct]-A.logits.squeeze()[-1][foil]).backward()
else:
(A.logits[-1][correct]-A.logits[-1][foil]).backward()
else:
if model.config.model_type == 'opt' or model.config.model_type == 'bloom':
(A.logits[-1][correct]).backward()
else:
(A.logits.squeeze()[-1][correct]).backward()
handle.remove()
hook.remove()
return np.array(embeddings_gradients).squeeze(), np.array(embeddings_list).squeeze()
def input_x_gradient(grads, embds, normalize=False):
input_grad = np.sum(grads * embds, axis=-1).squeeze()
if normalize:
#print('before input_grad', input_grad)
norm = np.linalg.norm(input_grad, ord=1)
input_grad /= norm
#print('after input_grad', input_grad)
return input_grad
def l1_grad_norm(grads, normalize=False):
l1_grad = np.linalg.norm(grads, ord=1, axis=-1).squeeze()
if normalize:
norm = np.linalg.norm(l1_grad, ord=1)
l1_grad /= norm
return l1_grad
def erasure_scores(model, input_ids, input_mask, correct=None, foil=None, remove=False, normalize=False):
model.eval()
if correct is None:
correct = input_ids[-1]
input_ids = input_ids[:-1]
input_mask = input_mask[:-1]
input_ids = torch.unsqueeze(torch.tensor(input_ids, dtype=torch.long).to(model.device), 0)
input_mask = torch.unsqueeze(torch.tensor(input_mask, dtype=torch.long).to(model.device), 0)
A = model(input_ids, attention_mask=input_mask)
softmax = torch.nn.Softmax(dim=0)
logits = A.logits[0][-1]
probs = softmax(logits)
if foil is not None and correct != foil:
base_score = (probs[correct]-probs[foil]).detach().cpu().numpy()
else:
base_score = (probs[correct]).detach().cpu().numpy()
scores = np.zeros(len(input_ids[0]))
for i in range(len(input_ids[0])):
if remove:
input_ids_i = torch.cat((input_ids[0][:i], input_ids[0][i+1:])).unsqueeze(0)
input_mask_i = torch.cat((input_mask[0][:i], input_mask[0][i+1:])).unsqueeze(0)
else:
input_ids_i = torch.clone(input_ids)
input_mask_i = torch.clone(input_mask)
input_mask_i[0][i] = 0
A = model(input_ids_i, attention_mask=input_mask_i)
logits = A.logits[0][-1]
probs = softmax(logits)
if foil is not None and correct != foil:
erased_score = (probs[correct]-probs[foil]).detach().cpu().numpy()
else:
erased_score = (probs[correct]).detach().cpu().numpy()
scores[i] = base_score - erased_score # higher score = lower confidence in correct = more influential input
if normalize:
norm = np.linalg.norm(scores, ord=1)
scores /= norm
return scores
def visualize(attention, tokenizer, input_ids, gold=None, normalize=False, print_text=True, save_file=None, title=None, figsize=60, fontsize=36):
tokens = [tokenizer.decode(i) for i in input_ids[0][:len(attention) + 1]]
if gold is not None:
for i, g in enumerate(gold):
if g == 1:
tokens[i] = "**" + tokens[i] + "**"
# Normalize to [-1, 1]
if normalize:
a,b = min(attention), max(attention)
x = 2/(b-a)
y = 1-b*x
attention = [g*x + y for g in attention]
attention = np.array([list(map(float, attention))])
fig, ax = plt.subplots(figsize=(figsize,figsize))
norm = mpl.colors.Normalize(vmin=-1, vmax=1)
im = ax.imshow(attention, cmap='seismic', norm=norm)
if print_text:
ax.set_xticks(np.arange(len(tokens)))
ax.set_xticklabels(tokens, fontsize=fontsize)
else:
ax.get_xaxis().set_visible(False)
ax.get_yaxis().set_visible(False)
plt.setp(ax.get_xticklabels(), rotation=45, ha="right",
rotation_mode="anchor")
for (i, j), z in np.ndenumerate(attention):
ax.text(j, i, '{:0.2f}'.format(z), ha='center', va='center', fontsize=fontsize)
ax.set_title("")
fig.tight_layout()
if title is not None:
plt.title(title, fontsize=36)
if save_file is not None:
plt.savefig(save_file, bbox_inches = 'tight',
pad_inches = 0)
plt.close()
else:
plt.show()
def main():
pass
if __name__ == "__main__":
main()