-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathextract_explanations.py
271 lines (224 loc) · 11.7 KB
/
extract_explanations.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
import os
import argparse
import json
from tqdm import tqdm
import pandas as pd
import csv
from collections import defaultdict
import json
import pickle
import torch
import src.utils_contributions as utils_contributions
from src.contributions import ModelWrapper
from lm_saliency import *
device = "cuda" if torch.cuda.is_available() else "cpu"
our_methods = ['logit_aff_x_j', 'logit_aff_x_j_alti']
def read_sva_dataset():
df = pd.read_csv('./data/sva_with_targets/lgd_dataset.csv', sep=',', index_col=0)
return df
def read_blimp_dataset(blimp_subset):
'''Read blimp_subset dataset as list of lists'''
blimp_dir = 'data/blimp'
df = pd.read_csv(f'{blimp_dir}_with_targets/{blimp_subset}.csv', index_col=0)
return df
def read_ioi_dataset():
'''Read blimp_subset dataset as list of lists'''
df = pd.read_csv(f'./data/ioi_with_targets/ioi_dataset.csv', index_col=0)
return df
def save_logits_preds(info_sentence, dataset, name_path):
os.makedirs(f'./results/{name_path}', exist_ok=True)
info_sentence_results_file = f'./results/{name_path}/{dataset}_info_sentence.csv'
with open(info_sentence_results_file, 'w', encoding='UTF8') as f:
# create the csv writer
writer = csv.writer(f, delimiter ='|')
writer.writerow(('sentence', 'logit_diff', 'correct_id', 'foil_id'))
writer.writerows(info_sentence)
def tokens2words(tokenized_text, bos=False):
words = []
tokens_in_words = []
if bos==True:
init_sentence = 1
else:
init_sentence = 0
for counter, tok in enumerate(tokenized_text):
if bos==True and counter==0:
words.append(tokenized_text[counter])
tokens_in_words.append([counter])
elif tok.startswith('Ġ') or counter==init_sentence:# or tok in punctuation:
if tok.startswith('Ġ'):
tok = tok[1:]
words.append(tok)
tokens_in_words.append([counter])
else:
words[-1] += tok
tokens_in_words[-1].append(counter)
return tokens_in_words, words
def track2input_tokens(logit_trans_vect_dict, methods, contributions_mix_alti, token_list):
'''Gets layer-wise Attn logits contributions and tracks them down to the input.
logit_trans_vect_dict: dictionary 'logit_attn_simp' and 'logit_attn_full'
contributions_mix_alti: layerwise ALTI contributions
'''
results_dict = defaultdict(list)
for token in range(len(token_list)):
for method in methods:
layerwise_contributions = logit_trans_vect_dict[method]
# Assume no token mixing across layers
results_dict[f'logit_{method}'].append(layerwise_contributions[:, -1, token].cpu().detach())
for layer in range(0,layerwise_contributions.shape[0]):
# Track contributions to the input via ALTI (contributions_mix_alti), M matrix in the paper
if layer == 0:
alti_logit_layer_token = layerwise_contributions[layer, -1, token].cpu().detach().unsqueeze(0)
else:
# Multiply attn decomposition by ALTI_{l-1}
token_layer_contribs = torch.matmul(layerwise_contributions[layer, -1, token].cpu().detach(),contributions_mix_alti[layer-1])
alti_logit_layer_token = torch.cat([alti_logit_layer_token, token_layer_contribs.unsqueeze(0)], dim=0)
results_dict[f'logit_{method}_alti'].append(alti_logit_layer_token)
return results_dict
def main(args):
name_path = args.name_path
model, tokenizer = utils_contributions.load_model_tokenizer(name_path)
explanation_type = args.explanation_type
model_wrapped = ModelWrapper(model)
# Create dictionary where attibution scores are stored
explanations_dict = defaultdict(list)
# Load dataset as DataFrame
dataset = args.dataset
if 'sva' in dataset:
df = read_sva_dataset()
print('\ndataset', dataset)
print(dataset[-1])
num_attractors = int(dataset[-1])
# Filter by num_attractors
if num_attractors != -1:
df = df[df['num_attractors']==num_attractors].reset_index(drop=True)
num_examples = 200
elif dataset == 'ioi':
df = read_ioi_dataset()
num_examples = len(df)
else:
df = read_blimp_dataset(dataset)
num_examples = len(df)
logits_modules_list = []
info_sentence = []
for idx in tqdm(range(num_examples)):
model.zero_grad()
# Load text from DataFrame
if 'sva' in dataset:
text = df['one_prefix_prefix'][idx][:df['one_prefix_prefix'][idx].index('***mask***')-1]
else:
text = df['one_prefix_prefix'][idx]
input = text
target = df['one_prefix_word_good'][idx]
foil = df['one_prefix_word_bad'][idx]
# Tokenize target and foil
if 'facebook/opt' in tokenizer.name_or_path:
# OPT tokenizer adds a BOS token at pos 0 when
# tokenizing, so we pick second position
CORRECT_ID = tokenizer(" " + target)['input_ids'][1]
FOIL_ID = tokenizer(" " + foil)['input_ids'][1]
min_length = 2
else:
CORRECT_ID = tokenizer(" " + target)['input_ids'][0]
FOIL_ID = tokenizer(" " + foil)['input_ids'][0]
min_length = 1
# Get number of layers in model
try:
num_layers = model.config.n_layers
except:
num_layers = model.config.num_hidden_layers
# Tokenize sentence
pt_batch = tokenizer(text, return_tensors="pt").to(device)
tokenized_text = tokenizer.convert_ids_to_tokens(pt_batch["input_ids"][0])
# If sentence contains just one token skip sentence
if CORRECT_ID == FOIL_ID or len(tokenized_text) == min_length:
# Add zeros explanation not to affect the order when evaluating
contra_explanation = np.zeros(len(tokenized_text))
if 'ours' in explanation_type:
for method in our_methods:
explanations_dict[method].append(contra_explanation.tolist())
#if method == 'logit_aff_x_j' or method == 'logit_aff_x_j_alti':
for layer in range(num_layers):
explanations_dict[f'{method}_layer_{str(layer)}'].append(contra_explanation.tolist())
logits_modules_list.append('NA')
info_sentence.append([text, 0, CORRECT_ID, FOIL_ID])
elif 'grad' in explanation_type:
explanations_dict['grad_norm'].append(contra_explanation.tolist())
explanations_dict['grad_norm_2'].append(contra_explanation.tolist())
explanations_dict['grad_inp'].append(contra_explanation.tolist())
explanations_dict['grad_inp_2'].append(contra_explanation.tolist())
elif explanation_type == 'erasure':
explanations_dict['erasure'].append(contra_explanation.tolist())
continue
if 'ours' in explanation_type:
# Run inference
logits, hidden_states, attentions = model_wrapped(pt_batch)
correct_id_logit = logits[0, -1, CORRECT_ID].item()
foil_id_logit = logits[0, -1, FOIL_ID].item()
info_sentence.append([text, correct_id_logit - foil_id_logit, CORRECT_ID, FOIL_ID])
# Our Approach (layerwise logits contributions)
# Contrastive explanation
token = [CORRECT_ID, FOIL_ID]
logit_trans_vect_dict, logits_modules, layer_alti_data = model_wrapped.get_logit_contributions(hidden_states, attentions, token)
# ALTI results
contributions_mix_alti = utils_contributions.compute_alti(layer_alti_data)
methods_decomp = ['aff_x_j'] # Logits Affine part of layer-wise decomposition
# Track layer-wise Attn and MLPs contributions to input
alti_lg_dict = track2input_tokens(logit_trans_vect_dict, methods_decomp, contributions_mix_alti, token)
for method in our_methods:
# Get logit difference between tokens and sum across layers
contrastive_contributions = (alti_lg_dict[method][0] - alti_lg_dict[method][1]).sum(0)
explanations_dict[method].append(contrastive_contributions.tolist())
#if method == 'logit_attn_full' or method == 'logit_attn_full_alti':
for layer in range(num_layers):
contrastive_contributions = (alti_lg_dict[method][0][layer] - alti_lg_dict[method][1][layer])
explanations_dict[f'{method}_layer_{str(layer)}'].append(contrastive_contributions.tolist())
# Add difference logits
logits_modules['correct_id_logit'] = correct_id_logit
logits_modules['foil_id_logit'] = foil_id_logit
logits_modules_list.append(logits_modules)
else:
# Kayo Yin results
input = input.strip() + " "
input_tokens = tokenizer(input)['input_ids']
attention_ids = tokenizer(input)['attention_mask']
if explanation_type == 'erasure':
contra_explanation = erasure_scores(model, input_tokens, attention_ids, correct=CORRECT_ID, foil=FOIL_ID, normalize=True)
explanations_dict['erasure'].append(contra_explanation.tolist())
elif 'grad' in explanation_type:
saliency_matrix, embd_matrix = saliency(model, input_tokens, attention_ids, foil=FOIL_ID)
contra_explanation = l1_grad_norm(saliency_matrix, normalize=True)
explanations_dict['grad_norm'].append(contra_explanation.tolist())
contra_explanation = input_x_gradient(saliency_matrix, embd_matrix, normalize=True)
explanations_dict['grad_inp'].append(contra_explanation.tolist())
model.zero_grad()
saliency_matrix, embd_matrix = saliency(model, input_tokens, attention_ids, correct=CORRECT_ID, foil=FOIL_ID)
contra_explanation = l1_grad_norm(saliency_matrix, normalize=True)
explanations_dict['grad_norm_2'].append(contra_explanation.tolist())
contra_explanation = input_x_gradient(saliency_matrix, embd_matrix, normalize=True)
explanations_dict['grad_inp_2'].append(contra_explanation.tolist())
name_path = name_path.replace('/','-')
save_logits_preds(info_sentence, dataset, name_path)
print('explanations_dict', explanations_dict.keys())
if 'sva' in dataset:
os.makedirs(f'./results/{dataset}', exist_ok = True)
save_dir = f'./results/{dataset}/{dataset}_{name_path}_{explanation_type}_{str(num_attractors)}.json'
elif dataset == 'ioi':
os.makedirs(f'./results/ioi', exist_ok = True)
save_dir = f'./results/ioi/{dataset}_{name_path}_{explanation_type}.json'
else:
os.makedirs(f'./results/blimp', exist_ok = True)
save_dir = f'./results/blimp/{dataset}_{name_path}_{explanation_type}.json'
with open(save_dir, 'w') as fp:
json.dump(explanations_dict, fp)
if 'ours' in explanation_type:
# Save logits info
os.makedirs(f'./results/logits', exist_ok = True)
with open(f'./results/logits/{dataset}_{name_path}.pickle', 'wb') as handle:
pickle.dump(logits_modules_list, handle, protocol=pickle.HIGHEST_PROTOCOL)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--name_path', help="path/name of model", type= str, default='gpt2-large')
parser.add_argument('--dataset', help="linguistic_phenomena", type= str)
parser.add_argument('--explanation_type', help="type of explanation: ours/erasure/grad_norm/grad_inp", type= str, default='ours')
args=parser.parse_args()
main(args)