forked from facebookresearch/fairseq
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathalign_and_segment.py
192 lines (159 loc) · 6.02 KB
/
align_and_segment.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
import os
import torch
import torchaudio
import sox
import json
import argparse
from examples.mms.data_prep.text_normalization import text_normalize
from examples.mms.data_prep.align_utils import (
get_uroman_tokens,
time_to_frame,
load_model_dict,
merge_repeats,
get_spans,
)
import torchaudio.functional as F
SAMPLING_FREQ = 16000
EMISSION_INTERVAL = 30
DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
def generate_emissions(model, audio_file):
waveform, _ = torchaudio.load(audio_file) # waveform: channels X T
waveform = waveform.to(DEVICE)
total_duration = sox.file_info.duration(audio_file)
audio_sf = sox.file_info.sample_rate(audio_file)
assert audio_sf == SAMPLING_FREQ
emissions_arr = []
with torch.inference_mode():
i = 0
while i < total_duration:
segment_start_time, segment_end_time = (i, i + EMISSION_INTERVAL)
context = EMISSION_INTERVAL * 0.1
input_start_time = max(segment_start_time - context, 0)
input_end_time = min(segment_end_time + context, total_duration)
waveform_split = waveform[
:,
int(SAMPLING_FREQ * input_start_time) : int(
SAMPLING_FREQ * (input_end_time)
),
]
model_outs, _ = model(waveform_split)
emissions_ = model_outs[0]
emission_start_frame = time_to_frame(segment_start_time)
emission_end_frame = time_to_frame(segment_end_time)
offset = time_to_frame(input_start_time)
emissions_ = emissions_[
emission_start_frame - offset : emission_end_frame - offset, :
]
emissions_arr.append(emissions_)
i += EMISSION_INTERVAL
emissions = torch.cat(emissions_arr, dim=0).squeeze()
emissions = torch.log_softmax(emissions, dim=-1)
stride = float(waveform.size(1) * 1000 / emissions.size(0) / SAMPLING_FREQ)
return emissions, stride
def get_alignments(
audio_file,
tokens,
model,
dictionary,
use_star,
):
# Generate emissions
emissions, stride = generate_emissions(model, audio_file)
T, N = emissions.size()
if use_star:
emissions = torch.cat([emissions, torch.zeros(T, 1).to(DEVICE)], dim=1)
# Force Alignment
if tokens:
token_indices = [dictionary[c] for c in " ".join(tokens).split(" ") if c in dictionary]
else:
print(f"Empty transcript!!!!! for audio file {audio_file}")
token_indices = []
blank = dictionary["<blank>"]
targets = torch.tensor(token_indices, dtype=torch.int32).to(DEVICE)
input_lengths = torch.tensor(emissions.shape[0]).unsqueeze(-1)
target_lengths = torch.tensor(targets.shape[0]).unsqueeze(-1)
path, _ = F.forced_align(
emissions.unsqueeze(0), targets.unsqueeze(0), input_lengths, target_lengths, blank=blank
)
path = path.squeeze().to("cpu").tolist()
segments = merge_repeats(path, {v: k for k, v in dictionary.items()})
return segments, stride
def main(args):
assert not os.path.exists(
args.outdir
), f"Error: Output path exists already {args.outdir}"
transcripts = []
with open(args.text_filepath) as f:
transcripts = [line.strip() for line in f]
print("Read {} lines from {}".format(len(transcripts), args.text_filepath))
norm_transcripts = [text_normalize(line.strip(), args.lang) for line in transcripts]
tokens = get_uroman_tokens(norm_transcripts, args.uroman_path, args.lang)
model, dictionary = load_model_dict()
model = model.to(DEVICE)
if args.use_star:
dictionary["<star>"] = len(dictionary)
tokens = ["<star>"] + tokens
transcripts = ["<star>"] + transcripts
norm_transcripts = ["<star>"] + norm_transcripts
segments, stride = get_alignments(
args.audio_filepath,
tokens,
model,
dictionary,
args.use_star,
)
# Get spans of each line in input text file
spans = get_spans(tokens, segments)
os.makedirs(args.outdir)
with open( f"{args.outdir}/manifest.json", "w") as f:
for i, t in enumerate(transcripts):
span = spans[i]
seg_start_idx = span[0].start
seg_end_idx = span[-1].end
output_file = f"{args.outdir}/segment{i}.flac"
audio_start_sec = seg_start_idx * stride / 1000
audio_end_sec = seg_end_idx * stride / 1000
tfm = sox.Transformer()
tfm.trim(audio_start_sec , audio_end_sec)
tfm.build_file(args.audio_filepath, output_file)
sample = {
"audio_start_sec": audio_start_sec,
"audio_filepath": str(output_file),
"duration": audio_end_sec - audio_start_sec,
"text": t,
"normalized_text":norm_transcripts[i],
"uroman_tokens": tokens[i],
}
f.write(json.dumps(sample) + "\n")
return segments, stride
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Align and segment long audio files")
parser.add_argument(
"-a", "--audio_filepath", type=str, help="Path to input audio file"
)
parser.add_argument(
"-t", "--text_filepath", type=str, help="Path to input text file "
)
parser.add_argument(
"-l", "--lang", type=str, default="eng", help="ISO code of the language"
)
parser.add_argument(
"-u", "--uroman_path", type=str, default="eng", help="Location to uroman/bin"
)
parser.add_argument(
"-s",
"--use_star",
action="store_true",
help="Use star at the start of transcript",
)
parser.add_argument(
"-o",
"--outdir",
type=str,
help="Output directory to store segmented audio files",
)
print("Using torch version:", torch.__version__)
print("Using torchaudio version:", torchaudio.__version__)
print("Using device: ", DEVICE)
args = parser.parse_args()
main(args)