-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathpde_BlackScholes_exchange_mc.py
124 lines (99 loc) · 4.1 KB
/
pde_BlackScholes_exchange_mc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
"""
Variance reduction of Monte Carlo approximation of solution using Antithetic Paths
"""
import torch
import torch.nn as nn
import numpy as np
import argparse
import tqdm
import os
import math
import pandas as pd
from lib.bsde_risk_neutral_measure import FBSDE_BlackScholes as FBSDE
from lib.options import Exchange
from lib.utils import set_seed
def sample_x0(batch_size, dim, device, lognormal: bool = True):
if lognormal:
sigma = 0.3
mu = 0.08
tau = 0.1
z = torch.randn(batch_size, dim, device=device)
x0 = torch.exp((mu-0.5*sigma**2)*tau + 0.3*math.sqrt(tau)*z) # lognormal
else:
x0 = torch.ones(batch_size, dim, device=device)
return x0
def write(msg, logfile, pbar):
pbar.write(msg)
with open(logfile, "a") as f:
f.write(msg)
f.write("\n")
def train(T,
n_steps,
d,
mu,
sigma,
ffn_hidden,
max_updates,
batch_size,
base_dir,
device
):
logfile = os.path.join(base_dir, "log.txt")
ts = torch.linspace(0,T,n_steps+1, device=device)
option = Exchange()
fbsde = FBSDE(d=d, mu=mu, sigma=sigma, ffn_hidden=ffn_hidden, ts=ts, net_per_timestep=True)
fbsde.to(device)
x0 = sample_x0(1, d, device, lognormal=False)
fbsde.eval()
discounted_payoff = fbsde.unbiased_price_mc(ts=ts, x0=x0, option=option, MC_samples=10000)
discounted_payoff_antithetic = fbsde.unbiased_price_mc(ts=ts, x0=x0, option=option, MC_samples=5000, antithetic=True)
variance_red_factor = discounted_payoff.var() / discounted_payoff_antithetic.var()
results = {'discounted_payoff':discounted_payoff.mean().item(),
'discounted_payoff_antithetic':discounted_payoff_antithetic.mean().item(),
'variance_red_factor':variance_red_factor.item(),
'var_discounted_payoff':discounted_payoff.var().item(),
'var_discounted_payoff_antithetic':discounted_payoff_antithetic.var().item()}
pd.DataFrame(results, index=[0]).to_csv(os.path.join(base_dir, 'results_antithetic.csv'))
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--base_dir', default='./numerical_results/', type=str)
parser.add_argument('--device', default=0, type=int)
parser.add_argument('--use_cuda', action='store_true', default=False)
parser.add_argument('--seed', default=1, type=int)
parser.add_argument('--n_seeds', default=10, type=int)
parser.add_argument('--batch_size', default=500, type=int)
parser.add_argument('--d', default=2, type=int)
parser.add_argument('--max_updates', default=5000, type=int)
parser.add_argument('--ffn_hidden', default=[20,20], nargs="+", type=int, help="hidden sizes of ffn networks approximations")
parser.add_argument('--T', default=0.5, type=float)
parser.add_argument('--n_steps', default=50, type=int, help="number of steps in time discrretisation")
parser.add_argument('--mu', default=0.05, type=float, help="risk free rate")
parser.add_argument('--sigma', default=0.3, type=float, help="risk free rate")
parser.add_argument('--visualize', action='store_true', default=False)
args = parser.parse_args()
if torch.cuda.is_available() and args.use_cuda:
device = "cuda:{}".format(args.device)
else:
device="cpu"
if torch.cuda.is_available() and args.use_cuda:
device = "cuda:{}".format(args.device)
else:
device="cpu"
for i in range(args.n_seeds):
print(i)
seed = args.seed + i
set_seed(seed)
results_path = os.path.join(args.base_dir, "BS", "exchange_{}".format(args.d), "antithetic", "seed{}".format(seed))
if not os.path.exists(results_path):
os.makedirs(results_path)
train(T=args.T,
n_steps=args.n_steps,
d=args.d,
mu=args.mu,
sigma=args.sigma,
ffn_hidden=args.ffn_hidden,
max_updates=args.max_updates,
batch_size=args.batch_size,
base_dir=results_path,
device=device
)