-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path01_08_09_first_code.jl
76 lines (44 loc) · 1.12 KB
/
01_08_09_first_code.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
# writing function for the Babylonian
function Babylonian(x; N = 10)
t = (1+x)/2
for i = 2: N; t = (t+x/t)/2 end
t
end
# variable declaration and function call
α = π; Babylonian(α), sqrt(α)
x = 2; Babylonian(x), sqrt(x)
#sum and quotient derivatives function
struct D <: Number
f::Tuple{Float64, Float64}
end
import Base:+, /, convert, promote_rule
+(x::D, y::D) = D(x.f .+ y.f)
/(x::D, y::D) = D((x.f[1]/y.f[1], (y.f[1]*x.f[2] - x.f[1]*y.[2])/y.f[1]^2))
convert(::Type{D}, x::Real) = D((x, zero(x)))
promote_rule(::Type{D}, ::Type{<:Number}) = D
#variable and function test
x = 49; Babylonian(D((x,1))), (sqrt(x), .5/sqrt(x))
x = π; Babylonian(D((x,1))), (sqrt(x), .5/sqrt(x))
#derivative Babylonian
function dBabylonia(x; N = 10)
t = (1+x)/2
m = 1/2
for i = 1:N;
t = (t + x/t)/2;
m = (m+(t-x*m)/t^2)/2;
end
m
end
#variable testing
x = π; dBabylonia(x), .5/sqrt(x)
#istanbul_sin
function istanbul_sin(x)
t = 0
for i=1:10
t -= (-1.0)^i*(x)^(2*i-1)/prod(1:(2*i-1))
end
t
end
istanbul_sin(D((1.0, 1.0)))
A = randn(3,3)
x = randn(3)