-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmodel.py
78 lines (57 loc) · 2.64 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
# -*- coding: utf-8 -*-
"""
Created on Sat Mar 27 07:43:41 2021
@author: lpott
"""
import torch.nn as nn
import torch.nn.functional as F
class DilatedResBlock(nn.Module):
def __init__(self,dilation,channel,max_len):
super(DilatedResBlock,self).__init__()
self.dilation = dilation
self.channel = channel
self.half_channel = int(channel/2)
self.max_len = max_len
self.reduce = nn.Conv1d(channel,self.half_channel,1)
self.masked = nn.Conv1d(self.half_channel,self.half_channel,3,dilation=dilation)
self.increase = nn.Conv1d(self.half_channel,channel,1)
"""
self.reduce_norm = nn.LayerNorm(normalized_shape=[max_len])#channel)
self.masked_norm = nn.LayerNorm(normalized_shape=[max_len])#self.half_channel)
self.increase_norm = nn.LayerNorm(normalized_shape=[max_len])#self.half_channel)
"""
self.reduce_norm = nn.LayerNorm(normalized_shape=channel)
self.masked_norm = nn.LayerNorm(normalized_shape=self.half_channel)
self.increase_norm = nn.LayerNorm(normalized_shape=self.half_channel)
def forward(self,x):
y = self.reduce_norm(x.permute(0,2,1)).permute(0,2,1)
#y = self.reduce_norm(x)
y = F.leaky_relu(x)
y = self.reduce(y)
y = self.masked_norm(y.permute(0,2,1)).permute(0,2,1)
y = F.leaky_relu(y)
y = F.pad(y,pad=(2 + (self.dilation-1)*2,0),mode='constant')
y = self.masked(y)
y = self.increase_norm(y.permute(0,2,1)).permute(0,2,1)
#y = self.increase_norm(y)
y = F.leaky_relu(y)
y = self.increase(y)
return x+y
class NextItNet(nn.Module):
"""
"""
def __init__(self,embedding_dim,output_dim,max_len,hidden_layers=2,dilations=[1,2,4,8],pad_token=0):
super(NextItNet,self).__init__()
self.embedding_dim = embedding_dim
self.channel = embedding_dim
self.output_dim = output_dim
self.pad_token = pad_token
self.max_len = max_len
self.item_embedding = nn.Embedding(output_dim+1,embedding_dim,padding_idx=pad_token)
self.hidden_layers = nn.Sequential(*[nn.Sequential(*[DilatedResBlock(d,embedding_dim,max_len) for d in dilations]) for _ in range(hidden_layers)])
self.final_layer = nn.Linear(embedding_dim, output_dim)
def forward(self,x):
x = self.item_embedding(x).permute(0,2,1)
x = self.hidden_layers(x)
x = self.final_layer(x.permute(0,2,1))
return x