-
Notifications
You must be signed in to change notification settings - Fork 36
/
Copy pathfuse_bn.py
221 lines (184 loc) · 7.15 KB
/
fuse_bn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
# ------------------------------------------------------------------------------
# Copyright (c) Microsoft
# Licensed under the MIT License.
# Written by Bin Xiao ([email protected])
# Modified by Bowen Cheng ([email protected])
# ------------------------------------------------------------------------------
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import argparse
import os
import pprint
import json
import copy
import torch
import torch.nn as nn
import torch.backends.cudnn as cudnn
import torch.nn.parallel
import torch.optim
import torch.utils.data
import time
import torch.utils.data.distributed
import torchvision.transforms
import torch.multiprocessing
from tqdm import tqdm
import _init_paths
import models
from config import cfg
from config import check_config
from config import update_config
from core.inference import get_multi_stage_outputs
from core.inference import aggregate_results
from core.group import HeatmapParser
from dataset import make_test_dataloader, make_train_dataloader
from fp16_utils.fp16util import network_to_half
from utils.utils import create_logger
from utils.utils import get_model_summary
from utils.vis import save_debug_images
from utils.vis import save_valid_image
from utils.transforms import resize_align_multi_scale
from utils.transforms import get_final_preds
from utils.transforms import get_multi_scale_size
from arch_manager import ArchManager
torch.multiprocessing.set_sharing_strategy('file_system')
def parse_args():
parser = argparse.ArgumentParser(description='Test keypoints network')
# general
parser.add_argument('--cfg',
help='experiment configure file name',
required=True,
type=str)
parser.add_argument('opts',
help="Modify config options using the command-line",
default=None,
nargs=argparse.REMAINDER)
#fixed config for supernet
parser.add_argument('--superconfig',
default=None,
type=str,
help='fixed arch for supernet training')
args = parser.parse_args()
return args
def rm_bn_from_net(net):
for m in net.modules():
if isinstance(m, nn.BatchNorm2d) or isinstance(m, nn.BatchNorm1d):
m.forward = lambda x: x
def fuse_conv_and_bn(conv, bn):
with torch.no_grad():
# init
fusedconv = torch.nn.Conv2d(conv.in_channels,
conv.out_channels,
kernel_size=conv.kernel_size,
stride=conv.stride,
padding=conv.padding,
groups=conv.groups,
bias=True)
# prepare filters
bn_weight = bn.weight.clone()
bn_weight.div_(torch.sqrt(bn.eps + bn.running_var))
fusedconv.weight.copy_(bn_weight.view(conv.out_channels, 1, 1, 1) * conv.weight)
# prepare spatial bias
if conv.bias is not None:
b_conv = conv.bias
else:
b_conv = torch.zeros(conv.weight.size(0))
b_conv = bn_weight * b_conv.view(-1, conv.out_channels).view(fusedconv.bias.size())
b_bn = bn.bias - bn.weight.mul(bn.running_mean).div(torch.sqrt(bn.running_var + bn.eps))
fusedconv.bias.copy_(b_conv + b_bn)
return fusedconv
def fuse_deconv_and_bn(deconv, bn, op=1):
with torch.no_grad():
# init
FusedDeconv = torch.nn.ConvTranspose2d(deconv.in_channels,
deconv.out_channels,
kernel_size=deconv.kernel_size,
stride=deconv.stride,
padding=deconv.padding,
bias=True
)
# prepare filters
bn_weight=bn.weight.clone()
bn_weight.div_(torch.sqrt(bn.eps + bn.running_var))
FusedDeconv.weight.copy_(bn_weight.view(1, deconv.out_channels, 1, 1)*deconv.weight)
# prepare spatial bias
if deconv.bias is not None:
b_conv = deconv.bias
else:
b_conv = torch.zeros(deconv.weight.size(1))
b_conv = bn_weight*b_conv.view(-1,deconv.out_channels).view(FusedDeconv.bias.size())
b_bn = op * (bn.bias - bn.weight.mul(bn.running_mean).div(torch.sqrt(bn.running_var + bn.eps)))
FusedDeconv.bias.copy_(b_conv + b_bn)
return FusedDeconv
def fuse_cbr(cbr):
cbr[0] = fuse_conv_and_bn(cbr[0], cbr[1])
def fuse_inv(inv):
fuse_cbr(inv.inv)
fuse_cbr(inv.depth_conv)
fuse_cbr(inv.point_conv)
def transfer(net, arch):
fuse_cbr(net.first[0])
fuse_cbr(net.first[1])
net.first[2] = fuse_conv_and_bn(net.first[2], net.first[3])
backbone_setting = arch['backbone_setting']
for id_stage in range(len(backbone_setting)):
n = backbone_setting[id_stage]['num_blocks']
for id_block in range(n):
fuse_inv(net.stage[id_stage][id_block])
num_deconv_layers = 3
for i in range(num_deconv_layers):
net.deconv_refined[i] = fuse_deconv_and_bn(net.deconv_refined[i], net.deconv_bnrelu[i][0])
net.deconv_raw[i] = fuse_deconv_and_bn(net.deconv_raw[i], net.deconv_bnrelu[i][0], op=0)
if i > 0:
fuse_cbr(net.final_refined[i-1].conv)
fuse_cbr(net.final_raw[i-1].conv)
def diff(a, b):
print(((a-b)**2).mean())
def abssum(a):
print((torch.abs(a)).sum())
def main():
args = parse_args()
update_config(cfg, args)
check_config(cfg)
# change the resolution according to config
fixed_arch = None
with open(args.superconfig, 'r') as f:
fixed_arch = json.load(f)
cfg.defrost()
reso = fixed_arch['img_size']
cfg.DATASET.INPUT_SIZE = reso
cfg.DATASET.OUTPUT_SIZE = [reso // 4, reso // 2]
cfg.TEST.FLIP_TEST = False
cfg.TEST.ADJUST = False
cfg.TEST.REFINE = False
cfg.freeze()
# cudnn related setting
cudnn.benchmark = cfg.CUDNN.BENCHMARK
torch.backends.cudnn.deterministic = cfg.CUDNN.DETERMINISTIC
torch.backends.cudnn.enabled = cfg.CUDNN.ENABLED
arch_manager = ArchManager(cfg)
cfg_arch = fixed_arch
model = eval('models.'+cfg.MODEL.NAME+'.get_pose_net')(
cfg, is_train=True, cfg_arch = cfg_arch
)
# set eval mode
model.eval()
dump_input = torch.ones(
(1, 3, cfg.DATASET.INPUT_SIZE, cfg.DATASET.INPUT_SIZE)
)
print('=> loading model from {}'.format(cfg.TEST.MODEL_FILE))
model.load_state_dict(torch.load(cfg.TEST.MODEL_FILE), strict=True)
model_ori = copy.deepcopy(model)
transfer(model, fixed_arch)
rm_bn_from_net(model)
with torch.no_grad():
o1 = model_ori(dump_input)
o2 = model(dump_input)
diff(o1[0], o2[0])
abssum(o1[0])
abssum(o1[1])
abssum(o2[0])
abssum(o2[1])
torch.save(model.state_dict(), './output/crowd_pose_kpt/pose_mobilenet/mobile/model_fuse_bn.pth.tar')
if __name__ == '__main__':
main()