-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathconfig.yaml
92 lines (79 loc) · 3.01 KB
/
config.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
# General settings
experiment_name: "" # name of the experiment
device: 0 # -1 for CPU, otherwise GPU id
seed: 27 # random seed
data_base_path: "" # path to the base directory containing the datasets
# Training
training:
epochs: 10 # number of epochs
lr: !!float 1e-3 # learning rate
batch_size: 16 # batch size
num_workers: 20 # number of workers for data loading
log_images_frequency: 1000 # log input images every n batches
resume_training: false # resume training and logging of the experiment with the same name
data:
patch_size: 224 # patch size for training
max_distortions: 4 # maximum number of distortions to apply. Must be in the range [0, 7]
num_levels: 5 # number of distortion levels to consider. Must be in the range [1, 5]
pristine_prob: 0.05 # probability of not distorting images during training
optimizer:
name: SGD # optimizer name
momentum: 0.9 # momentum
weight_decay: !!float 1e-4 # weight decay
lr_scheduler:
name: CosineAnnealingWarmRestarts # learning rate scheduler name
T_0: 1 # T_0 for CosineAnnealingWarmRestarts
T_mult: 2 # T_mult for CosineAnnealingWarmRestarts
eta_min: !!float 1e-6 # eta_min for CosineAnnealingWarmRestarts
# Validation
validation:
frequency: 1 # validate every frequency epochs
num_splits: 10 # number of splits to consider for each dataset
alpha: 0.1 # alpha value for the regression
visualize: true # visualize embeddings with t-SNE for KADID10K dataset
visualization:
tsne:
n_components: 3 # number of components for t-SNE
perplexity: 30 # perplexity for t-SNE
n_iter: 1000 # number of iterations for t-SNE
umap:
n_components: 3 # number of components for UMAP
n_neighbors: 25 # number of neighbors for UMAP
min_dist: 0.2 # min_dist for UMAP
metric: euclidean # metric for UMAP
datasets: # datasets to use for validation
- live
- csiq
- tid2013
- kadid10k
- flive
- spaq
# Test
test:
batch_size: 16 # batch size
num_workers: 20 # number of workers for data loading
num_splits: 10 # number of splits to consider for each dataset
grid_search: true # if True, grid search on the validation splits is used to find the best alpha value for the regression
alpha: 0.1 # alpha value for the regression when grid search is not used
crop_size: 224 # crop size for inference
datasets: # datasets to use for test
- live
- csiq
- tid2013
- kadid10k
- flive
- spaq
# Model
model:
temperature: 0.1 # temperature for the NT-Xent loss
encoder: # encoder parameters
embedding_dim: 128 # embedding dimension
pretrained: true # if True, use ImageNet pretrained weights
use_norm: true # if True, normalize the embeddings
# Logging
logging:
use_wandb: true # if True, use wandb for logging
wandb:
online: true # if True, log online to wandb
project: "" # wandb project name
entity: "" # wandb entity name