-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathmgn_model.py
345 lines (287 loc) · 11.7 KB
/
mgn_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
from modeling import *
# def ar_for_ro(ro, N, Cap, k, D, S):
# return ro*N*Cap/k.mean()/D.mean()/S.mean()
def ar_for_ro(ro, N, Cap, k, R, L, S):
return ro*N*Cap/k.mean()/R.mean()/L.mean()/S.mean()
def EW_MMc(ar, EX, c):
ro = ar*EX/c
C = 1/(1 + (1-ro)*G(c+1)/(c*ro)**c * sum([(c*ro)**k/G(k+1) for k in range(c) ] ) )
# EN = ro/(1-ro)*C + c*ro
return C/(c/EX - ar)
def EW_MGc(ar, X, c):
EX2, EX = X.moment(2), X.moment(1)
CoeffVar = math.sqrt(EX2 - EX**2)/EX
return (1 + CoeffVar**2)/2 * EW_MMc(ar, EX, c)
def check_MGc_assumption():
# N, Cap = 10, 1
N_times_Cap = 100
r = 1
L = Exp(1, 1)
S = DUniform(1, 1)
sinfo_m['njob'] = 2000*10
sching_m = {'type': 'plain', 'r': r}
blog(N_times_Cap=N_times_Cap, sinfo_m=sinfo_m, mapping_m=mapping_m, sching_m=sching_m)
def run(ro, N, k, R, L, S, r=1):
Cap = int(N_times_Cap/N)
print("\n")
log(INFO, "ro= {}, N= {}, Cap= {}, k= {}, R= {}, L= {}, S= {}, r= {}".format(ro, N, Cap, k, R, L, S, r) )
ar = round(ar_for_ro(ro, N, Cap, k, R, L, S), 2)
sinfo_m.update({
'nworker': N, 'wcap': Cap, 'ar': ar,
'k_rv': k,
'reqed_rv': R,
'lifetime_rv': L,
'straggle_m': {'slowdown': lambda load: S.sample() } } )
sching_m['r'] = r
sim_m = sim(sinfo_m, mapping_m, sching_m, "N{}_C{}".format(N, Cap) )
blog(sim_m=sim_m)
# c = int(N*Cap/R.mean() ) # N*Cap
# print("c= {}".format(c) )
# EW = EW_MGc(ar, L, c)
# print("M/G/c_EW= {}".format(EW) )
return {
'ar': ar,
'EW': sim_m['waittime_mean'],
'pblocking': sim_m['frac_jobs_waited_inq'],
'EW_givenqed': sim_m['waittime_givenqed_mean'] }
def test(ro, R=DUniform(1, 1) ):
print("---------------")
run(ro, 1, k, R, L, S)
# run(ro, 2, k, R, L, S)
# run(ro, 5, k, R, L, S)
# run(ro, 10, k, R, L, S)
def check_EW_scaling_wrt_ro(N, R):
log(INFO, "", N=N, R=R)
# '''
ro_l, EW_l = [], []
for ro in np.linspace(0.1, 0.9, 9):
ro = round(ro, 2)
ar, EW, pblocking = run(ro, N, k, R, L, S)
print("ro= {}, EW= {}".format(ro, EW) )
ro_l.append(ro)
EW_l.append(EW)
blog(ro_l=ro_l, EW_l=EW_l)
# '''
# ro_l= [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]
# EW_l= [0.00025548087470978202, 0.00056689800613990546, 0.00089200542402208672, 0.0012637166320921696, 0.0017178514022176334, 0.0021802843452227629, 0.002912705863562876, 0.0061096923858674568, 0.043253547318583753]
print("ratio = EW/(ro/(1-ro))")
for i, EW in enumerate(EW_l):
ro = ro_l[i]
ratio = EW/(ro/(1-ro) )
print("ro= {}, ratio= {}".format(ro, ratio) )
log(INFO, "done.")
def check_EW_scaling_wrt_EL2_over_EL(N, R, ro):
log(INFO, "", N=N, R=R, ro=ro)
EL2_over_EL_l, EW_l = [], []
for mu in np.linspace(0.1, 1, 10):
L = Exp(mu, 1)
EL2_over_EL = round(L.moment(2)/L.moment(1), 2)
ar, EW, pblocking = run(ro, N, k, R, L, S)
print("EL2_over_EL= {}, EW= {}".format(EL2_over_EL, EW) )
EL2_over_EL_l.append(EL2_over_EL)
EW_l.append(EW)
blog(EL2_over_EL_l=EL2_over_EL_l, EW_l=EW_l)
# '''
print("ratio = EW/(EL2/EL)")
for i, EW in enumerate(EW_l):
EL2_over_EL = EL2_over_EL_l[i]
ratio = EW/EL2_over_EL
print("EL2_over_EL= {}, ratio= {}".format(EL2_over_EL, ratio) )
log(INFO, "done.")
def check_EW_scaling_wrt_ER2_over_ER(N, L, ro):
log(INFO, "", N=N, L=L, ro=ro)
ER2_over_ER_l, EW_l = [], []
for u in np.linspace(0.1, 1, 10):
R = Uniform(0.1, u)
ER2_over_ER = round(R.moment(2)/R.moment(1), 2)
ar, EW, pblocking = run(ro, N, k, R, L, S)
print("ER2_over_ER= {}, EW= {}".format(ER2_over_ER, EW) )
ER2_over_ER_l.append(ER2_over_ER)
EW_l.append(EW)
blog(ER2_over_ER_l=ER2_over_ER_l, EW_l=EW_l)
print("ratio = EW/(ER2/ER)")
for i, EW in enumerate(EW_l):
ER2_over_ER = ER2_over_ER_l[i]
ratio = EW/ER2_over_ER
print("ER2_over_ER= {}, ratio= {}".format(ER2_over_ER, ratio) )
log(INFO, "done.")
def check_EW_scaling_wrt_Ek2_over_Ek(N, R, L, ro):
log(INFO, "", N=N, R=R, L=L, ro=ro)
Ek2_over_Ek_l, EW_l = [], []
for u in range(1, 10):
k = DUniform(1, u)
Ek2_over_Ek = round(k.moment(2)/k.moment(1), 2)
ar, EW, pblocking = run(ro, N, k, R, L, S)
print("Ek2_over_Ek= {}, EW= {}".format(Ek2_over_Ek, EW) )
Ek2_over_Ek_l.append(Ek2_over_Ek)
EW_l.append(EW)
blog(Ek2_over_Ek_l=Ek2_over_Ek_l, EW_l=EW_l)
print("ratio = EW/(ER2/ER)")
for i, EW in enumerate(EW_l):
Ek2_over_Ek = Ek2_over_Ek_l[i]
ratio = EW/Ek2_over_Ek
print("Ek2_over_Ek= {}, ratio= {}".format(Ek2_over_Ek, ratio) )
log(INFO, "done.")
def check_EW_scaling_wrt_model(N, k, R, L, S):
log(INFO, "", N=N, k=k, R=R, L=L, S=S)
sinfo_m['njob'] = 2000*10
ET = L.mean()*sum([X_n_k(S, i, i).mean()*k.pdf(i) for i in k.v_l] )
ET2 = L.moment(2)*sum([X_n_k(S, i, i).moment(2)*k.pdf(i) for i in k.v_l] )
EL, EL2 = L.mean(), L.moment(2)
blog(ET=ET, ET2=ET2, EL=EL, EL2=EL2)
C_moment = lambda i: k.moment(i)*R.moment(i)*L.moment(i)*S.moment(i)
print(">> C_moment(1)= {}, C_moment(2)= {}".format(C_moment(1), C_moment(2) ) )
def Pr_blocking(ar, ro):
# narr_atleast_forblocking = (1-ro)*N_times_Cap/(k.moment(1)*R.moment(1) ) - 1
# blog(narr_atleast_forblocking=narr_atleast_forblocking)
# ar_ = ar*L.tail(ET)*ET # *L.u_l/10
# return max(0, \
# 1 - math.exp(-ar_)*sum([ar_**i/math.factorial(i) for i in range(int(narr_atleast_forblocking) ) ] ) )
alpha = 0.9 # 1/2 # L.cdf(L.u_l/10) # L.cdf(10*EL) # 1/2 # L.cdf(EL)
# print("alpha= {}".format(alpha) )
long_jlifetime = EL + math.sqrt((EL2 - EL**2)*alpha/(1-alpha) ) # ET + math.sqrt((ET2 - ET**2)*alpha/(1-alpha) )
ro_short = ar*L.cdf(long_jlifetime)*C_moment(1)/N_times_Cap
narr_atleast_forblocking = (1-ro_short)*N_times_Cap / (k.moment(1)*R.moment(1) ) - 1
blog(narr_atleast_forblocking=narr_atleast_forblocking)
ar_long = ar*L.tail(long_jlifetime)*long_jlifetime
return max(0, \
1 - math.exp(-ar_long)*sum([ar_long**i/math.factorial(i) for i in range(int(narr_atleast_forblocking) ) ] ) )
def EW_givenqed_model(ro):
return ro/(1-ro) * C_moment(2)/C_moment(1)
def EW_model(ar, ro, pblocking=None):
if pblocking is None:
pblocking = Pr_blocking(ar, ro)
print("pblocking= {}".format(pblocking) )
return ro/(1-ro) * C_moment(2)/C_moment(1) / 2 * pblocking
EW_l, sim_EW_l = [], []
# for ro in np.linspace(0.1, 0.9, 9):
for ro in np.linspace(0.7, 0.9, 3):
ro = round(ro, 2)
m = run(ro, N, k, R, L, S)
ar, sim_EW, sim_pblocking = m['ar'], m['EW'], m['pblocking']
print("ar= {}, ro= {}".format(ar, ro) )
pblocking = Pr_blocking(ar, ro)
print("sim_pblocking= {}, pblocking= {}".format(sim_pblocking, pblocking) )
EW = EW_model(ar, ro, pblocking)
print("sim_EW= {}, EW= {}".format(sim_EW, EW) )
sim_EW_l.append(sim_EW)
EW_l.append(EW)
sim_EW_givenqed = m['EW_givenqed']
EW_givenqed = EW_givenqed_model(ro)
print("sim_EW_givenqed= {}, EW_givenqed= {}".format(sim_EW_givenqed, EW_givenqed) )
blog(EW_l=EW_l, sim_EW_l=sim_EW_l)
# print("ratio = sim_EW/model")
# for i, sim_EW in enumerate(sim_EW_l):
# EW = EW_l[i]
# ratio = sim_EW/EW
# print("EW= {}, ratio= {}".format(EW, ratio) )
log(INFO, "done.")
def check_EW_scaling_w_increasing_r(N, k, R, L, S, ro):
log(INFO, "", N=N, k=k, R=R, L=L, S=S, ro=ro)
# for r in np.linspace(1, 2, 3):
for r in range(1, 4):
m = run(ro, N, k, R, L, S, r)
ar, sim_EW, sim_pblocking = m['ar'], m['EW'], m['pblocking']
print("ar= {}, ro= {}".format(ar, ro) )
# test(ro=0.4)
# test(ro=0.65)
# test(ro=0.9)
# R = Uniform(0.25, 0.75) # Uniform(0.5, 1.5)
# test(0.9, R)
# R = Uniform(0.25, 0.75) # Uniform(1, 1) # Uniform(0.05, 0.15) # Uniform(0.5, 1.5)
# check_EW_scaling_wrt_ro(5, R)
# R = Uniform(1.5, 2.5) # Uniform(2, 2)
# check_EW_scaling_wrt_EL2_over_EL(N, R, ro=0.85)
# L = Exp(0.1, 1)
# check_EW_scaling_wrt_ER2_over_ER(N, L, ro=0.85)
# R = Uniform(1, 1) # Uniform(1, 1)
# L = Exp(0.1, 1) # Uniform(1, 1)
# check_EW_scaling_wrt_Ek2_over_Ek(N, R, L, ro=0.85)
k = BZipf(1, 10) # DUniform(1, 1) # DUniform(1, 4)
R = Uniform(1, 1)
L = TPareto(10, 10**6, 4) # Exp(0.1, 1) # Uniform(1, 1)
S = TPareto(1, 10, 2) # Uniform(1, 1)
check_EW_scaling_wrt_model(N, k, R, L, S)
log(INFO, "done.")
def plot_ET_wrt_d():
N, Cap = 10, 10
k = BZipf(1, 1) # DUniform(1, 1)
R = Uniform(1, 1)
b, beta = 10, 4
L = Pareto(b, beta) # TPareto(10, 10**6, 4)
a, alpha = 1, 4
S = Pareto(a, alpha) # Uniform(1, 1)
def alpha_gen(ro):
return alpha
ro = 0.55
red, r = 'Coding', 2
print("ro= {}".format(ro) )
ar = round(ar_for_ro(ro, N, Cap, k, R, L, S), 2)
sinfo_m.update({
'njob': 2000*10,
'nworker': N, 'wcap': Cap, 'ar': ar,
'k_rv': k,
'reqed_rv': R,
'lifetime_rv': L,
'straggle_m': {'slowdown': lambda load: S.sample() } } )
sching_m = {'type': 'expand_if_totaldemand_leq', 'r': r, 'threshold': None}
log(INFO, "", sinfo_m=sinfo_m, sching_m=sching_m, mapping_m=mapping_m)
def run(d):
sching_m['threshold'] = d
sim_m = sim(sinfo_m, mapping_m, sching_m, "N{}_C{}".format(N, Cap) )
blog(sim_m=sim_m)
return sim_m['responsetime_mean'], sim_m['waittime_mean']
sim_ET0, sim_EW0 = 0, 0 # run(d=0)
# print("** sim_ET0= {}, sim_EW0= {}".format(sim_ET0, sim_EW0) )
l = L.l_l*S.l_l
u = 50*L.mean()*S.mean()
d_l, sim_ET_l, ET_l = [], [], []
for d in np.logspace(math.log10(l), math.log10(u), 10):
print(">> d= {}".format(d) )
sim_ET, sim_EW = 0 ,0 # run(d)
print("** sim_ET= {}, sim_EW= {}".format(sim_ET, sim_EW) )
ET, EW = ET_EW_pareto(ro, sim_EW0, N, Cap, k, r, b, beta, a, alpha_gen, d, red)
print("** ET= {}, EW= {}".format(ET, EW) )
# ET_dummy, EW_dummy = ET_EW_pareto(ro, sim_EW0, N, Cap, k, r, b, beta, a, alpha_gen, d, red, K=1)
# print("** ET_dummy= {}, EW_dummy= {}".format(ET_dummy, EW_dummy) )
# print("EW_dummy/sim_EW= {}".format(EW_dummy/sim_EW) )
d_l.append(d)
sim_ET_l.append(sim_ET)
ET_l.append(ET)
if sim_ET > 3*sim_ET0:
break
plot.plot(d_l, sim_ET_l, label='Sim', c=next(darkcolor_c), marker=next(marker_c), ls=':', mew=1)
plot.plot(d_l, ET_l, label='Model', c=next(darkcolor_c), marker=next(marker_c), ls=':', mew=1)
prettify(plot.gca() )
plot.legend()
plot.xscale('log')
fontsize = 14
plot.xlabel('d', fontsize=fontsize)
plot.ylabel('E[T]', fontsize=fontsize)
plot.title(r'$N= {}$, $C= {}$, $\rho_0= {}$, $r= {}$, $k \sim$ {}'.format(N, Cap, ro, r, k) + '\n' + r'$R \sim$ {}, $L \sim$ {}, $S \sim$ {}'.format(R, L, S) )
plot.gcf().set_size_inches(5, 5)
plot.savefig('plot_ET_wrt_d.png', bbox_inches='tight')
plot.gcf().clear()
log(INFO, "done.")
if __name__ == "__main__":
N, Cap = 10, 1
b, beta = 10, 5
a, alpha = 1, 1000 # 2
k = BZipf(1, 1)
r = 1
# log(INFO, "", k=k, r=r, b=b, beta=beta, a=a, alpha=alpha)
def alpha_gen(ro):
return alpha
S = Pareto(a, alpha)
ar = round(ar_for_ro_pareto(1/2, N, Cap, k, b, beta, a, alpha_gen), 2)
sinfo_m = {
'ar': ar, 'njob': 2000*10, 'nworker': N, 'wcap': Cap,
'lifetime_rv': Pareto(b, beta),
'reqed_rv': DUniform(1, 1),
'k_rv': k,
'straggle_m': {'slowdown': lambda load: S.sample() } }
mapping_m = {'type': 'spreading'}
sching_m = {'type': 'expand_if_totaldemand_leq', 'r': r, 'threshold': None}
# blog(sinfo_m=sinfo_m, mapping_m=mapping_m, sching_m=sching_m)
# check_MGc_assumption()
plot_ET_wrt_d()