-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathprocessFeatures.m
207 lines (172 loc) · 6.46 KB
/
processFeatures.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
%%
% Lei Zhang, Meng Yang, and Xiangchu Feng,
% "Sparse Representation or Collaborative Representation: Which Helps Face Recognition?", in ICCV 2011.
% The author of the modified implementation: Mete Ahishali,
% Tampere University, Tampere, Finland.
%%
clc, clear, close all
addpath(genpath('crc'));
% Change the file name accordingly.
param.modelName = 'DenseNet121';
%1D or 2D corresponding to the traditional and proposed dictionary designs.
param.DicDesign = '2D';
inputData = strcat('features/features_max_', param.modelName, '.mat');
load(inputData)
objectFeatures = double(objectFeatures);
angles = gtd(:, 1);
meters = gtd(:, 2);
outName = strcat('competing_splits/', param.modelName);
if ~exist('competing_splits/', 'dir')
mkdir('competing_splits/')
end
%% Pre-processing: Quantization and Sample Selection
% Samples between [0.5, 50.5] in meters. Quantization with 100 cms.
partition = 0.5:1:60.5;
codebook = zeros(length(partition) + 1, 1);
codebook(2:length(partition) + 1) = 1:length(partition);
codebook(1) = -1;
codebook(end) = -1;
[~, meters_quant] = quantiz(meters, partition, codebook);
% Remove out of range samples
objectFeatures(meters_quant == -1, :) = [];
meters(meters_quant == -1, :) = [];
meters_quant(meters_quant == -1, :) = [];
% Let compute minimum samples per class.
uni_class = unique(meters_quant);
histt = zeros(length(uni_class), 1);
for i = 1:length(uni_class)
histt(i) = sum(meters_quant == uni_class(i));
end
eqSize = min(histt);
%% Collaborative Representation based Classification (CRC) implementation.
data = objectFeatures';
label = meters_quant;
reallabel = meters;
param.dictionary_size = 20; % Samples per class in the dictionary.
param.train_size = 1; % These are the proportations. 1:1
param.test_size = 1;
nuR = 5; % Number of runs.
param.MR = 0.5; % Measurement rate.
measurement_type = 'eigen'; % Gauss, eigen, or None. None means no compression.
projection_matrix = 'l2_norm'; % minimum_norm or l2_norm.
rng(1)
[Dic_all(1), train_all(1), test_all(1)] = split_data(data,label,param,reallabel);
[Dic_all(2), train_all(2), test_all(2)] = split_data(data,label,param,reallabel);
[Dic_all(3), train_all(3), test_all(3)] = split_data(data,label,param,reallabel);
[Dic_all(4), train_all(4), test_all(4)] = split_data(data,label,param,reallabel);
[Dic_all(5), train_all(5), test_all(5)] = split_data(data,label,param,reallabel);
% Metrics.
ard = zeros(1, nuR);
srd = zeros(1, nuR);
th = zeros(nuR, length(test_all(1).label));
rmse = zeros(1, nuR);
rmseLog = zeros(1, nuR);
y_preds = zeros(nuR, length(test_all(1).label));
y_trues = zeros(nuR, length(test_all(1).label));
for k = 1:nuR
disp(['Run ' num2str(k) '.'])
param.k = k;
% For the competing methods combine dictionary samples with training
% samples.
xx_train = [Dic_all(k).dictionary'; train_all(k).data'];
yy_train = [Dic_all(k).reallabel; train_all(k).reallabel];
xx_test = test_all(k).data';
yy_test = test_all(k).reallabel;
% CRC
[param.maskM, param.maskN] = size(Dic_all(k).label_matrix);
N = size(Dic_all(k).dictionary, 1); % Size of the feature vector.
Dic = Dic_all(k); % kth run.
train = train_all(k);
test = test_all(k);
dicRealLabel = Dic.reallabel; % Unquantized labels.
trainRealLabel = train.reallabel;
testRealLabel = test.reallabel;
D = Dic.dictionary; %This is the dictionary.
m = floor(param.MR * N); % number of measurements
% Dimensional reduction: measurement matrix Phi.
switch measurement_type
case 'eigen'
[phi,disc_value,Mean_Image] = Eigen_f(D,m);
phi = phi';
case 'Gauss'
phi = randn(m, N);
case 'None'
m = 1;
phi = 1;
param.MR = 1;
end
A = phi*D;
A = A./( repmat(sqrt(sum(A.*A)), [m,1]) ); %normalization
% Measurements for dictionary.
Y0 = phi * Dic.dictionary;
energ_of_Y0 = sum(Y0.*Y0);
tmp = find(energ_of_Y0 == 0);
Y0(:,tmp)=[];
train.label(tmp) = [];
Y0 = Y0./( repmat(sqrt(sum(Y0.*Y0)), [m,1]) ); %normalization
% Measurments for training.
Y1 = phi*train.data;
energ_of_Y1=sum(Y1.*Y1);
tmp=find(energ_of_Y1==0);
Y1(:,tmp)=[];
train.label(tmp)=[];
Y1 = Y1./( repmat(sqrt(sum(Y1.*Y1)), [m,1]) ); %normalization
% Measurments for test.
Y2 = phi*test.data;
energ_of_Y2=sum(Y2.*Y2);
tmp=find(energ_of_Y2==0);
Y2(:,tmp)=[];
test.label(tmp)=[];
Y2 = Y2./( repmat(sqrt(sum(Y2.*Y2)), [m,1]) ); %normalization
% Projection matrix computing
kappa = 0.4; % l2 regularized parameter value
switch projection_matrix
case 'minimum_norm'
Proj_M= pinv(A);
case 'l2_norm'
Proj_M = (A'*A+kappa*eye(size(A,2)))\A'; %l2 norm
case 'transpose'
Proj_M= A';
end
%%%% Testing with CRC.
ID = [];
for indTest = 1:size(Y2,2)
[id] = CRC_RLS(A,Proj_M,Y2(:,indTest),Dic.label);
ID = [ID id];
end
%%%%% Save variables
param.Proj_M = Proj_M;
param.Y0 = Y0;
param.Y1 = Y1;
param.Y2 = Y2;
param.trainLabel = train.label;
param.testLabel = test.label;
param.dicRealLabel = dicRealLabel;
param.trainRealLabel = trainRealLabel;
param.testRealLabel = testRealLabel;
% Compute necessary variables for CSEN training and testing.
prepareCSEN(Dic, param);
save(strcat(outName, '_mr_', num2str(param.MR), ...
'_run', num2str(k), ('.mat')), ...
'xx_train', 'xx_test', 'yy_train', 'yy_test', '-v6')
ard(k) = sum(abs(ID' - test.reallabel)./test.reallabel) ...
/ length(test.reallabel);
srd(k) = sum(((ID' - test.reallabel).^2)./test.reallabel) ...
/ length(test.reallabel);
th(k, :) = max(test.reallabel./ ID', ID'./test.reallabel);
rmse(k) = sqrt(sum((ID' - test.reallabel).^2) / length(test.reallabel));
rmseLog(k) = sqrt(sum((log(ID') - log(test.reallabel)).^2) ...
/ length(test.reallabel));
y_trues(k, :) = test.reallabel;
y_preds(k, :) = ID';
end
outName_results = strcat('results/CRC_base/', param.modelName);
if ~exist('results/CRC_base', 'dir')
mkdir('results/CRC_base/')
end
save([outName_results '_pred.mat'], 'y_trues', 'y_preds');
figure,
scatter(test.label, ID', 3, 'filled'),
title(strcat('Collaborative Filtering, MSE: ', ...
num2str(sum((test.label- ID').^2)/length(test.label))))
xlabel('Actual Distance in meters'), ylabel('Predicted Distance in meters')