forked from open-mmlab/mmdetection
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmaskformer_swin-l-p4-w12_64xb1-ms-300e_coco.py
73 lines (65 loc) · 2.06 KB
/
maskformer_swin-l-p4-w12_64xb1-ms-300e_coco.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
_base_ = './maskformer_r50_ms-16xb1-75e_coco.py'
pretrained = 'https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_large_patch4_window12_384_22k.pth' # noqa
depths = [2, 2, 18, 2]
model = dict(
backbone=dict(
_delete_=True,
type='SwinTransformer',
pretrain_img_size=384,
embed_dims=192,
patch_size=4,
window_size=12,
mlp_ratio=4,
depths=depths,
num_heads=[6, 12, 24, 48],
qkv_bias=True,
qk_scale=None,
drop_rate=0.,
attn_drop_rate=0.,
drop_path_rate=0.3,
patch_norm=True,
out_indices=(0, 1, 2, 3),
with_cp=False,
convert_weights=True,
init_cfg=dict(type='Pretrained', checkpoint=pretrained)),
panoptic_head=dict(
in_channels=[192, 384, 768, 1536], # pass to pixel_decoder inside
pixel_decoder=dict(
_delete_=True,
type='PixelDecoder',
norm_cfg=dict(type='GN', num_groups=32),
act_cfg=dict(type='ReLU')),
enforce_decoder_input_project=True))
# optimizer
# weight_decay = 0.01
# norm_weight_decay = 0.0
# embed_weight_decay = 0.0
embed_multi = dict(lr_mult=1.0, decay_mult=0.0)
norm_multi = dict(lr_mult=1.0, decay_mult=0.0)
custom_keys = {
'norm': norm_multi,
'absolute_pos_embed': embed_multi,
'relative_position_bias_table': embed_multi,
'query_embed': embed_multi
}
optim_wrapper = dict(
optimizer=dict(lr=6e-5, weight_decay=0.01),
paramwise_cfg=dict(custom_keys=custom_keys, norm_decay_mult=0.0))
max_epochs = 300
# learning rate
param_scheduler = [
dict(
type='LinearLR', start_factor=1e-6, by_epoch=False, begin=0, end=1500),
dict(
type='MultiStepLR',
begin=0,
end=max_epochs,
by_epoch=True,
milestones=[250],
gamma=0.1)
]
train_cfg = dict(max_epochs=max_epochs)
# NOTE: `auto_scale_lr` is for automatically scaling LR,
# USER SHOULD NOT CHANGE ITS VALUES.
# base_batch_size = (64 GPUs) x (1 samples per GPU)
auto_scale_lr = dict(base_batch_size=64)