forked from NVIDIA/TensorRT-LLM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrecurrent.py
316 lines (280 loc) · 12 KB
/
recurrent.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Optional
import torch
from .._utils import set_obj_attrs
from ..functional import Tensor, allgather, cast, concat, matmul, rg_lru, shape
from ..mapping import Mapping
from ..module import Module
from ..parameter import Parameter
from .linear import ColumnLinear, RowLinear
from .ssm import MambaConv1d
class GroupedLinear(Module):
def __init__(self,
in_features,
out_features,
num_blocks,
bias=True,
dtype=None,
use_fp8=False,
tp_group=None,
tp_size=1,
gather_output=True,
strict_dtype=False,
fuse_bias=False):
super().__init__()
assert in_features % num_blocks == 0 and out_features % num_blocks == 0
assert num_blocks % tp_size == 0
assert not (gather_output and fuse_bias)
self.in_features = in_features // tp_size
self.out_features = out_features // tp_size
self.num_blocks = num_blocks // tp_size
self.dtype = dtype
self.use_fp8 = use_fp8
self.fuse_bias = fuse_bias
self.weight = Parameter(shape=(self.num_blocks,
self.in_features // self.num_blocks,
self.out_features // self.num_blocks),
dtype=('fp8' if use_fp8 else dtype))
set_obj_attrs(self.weight, {
"weight_loader": self.weight_loader,
})
self.tp_size = tp_size
self.tp_group = tp_group
self.gather_output = gather_output
self.strict_dtype = self.dtype if strict_dtype else None
if bias:
self.bias = Parameter(shape=(self.num_blocks,
self.out_features // self.num_blocks),
dtype=dtype)
set_obj_attrs(self.bias, {
"weight_loader": self.weight_loader,
})
else:
self.register_parameter('bias', None)
def multiply_gather(self, x, weight):
grouped_shape = []
out_shape = []
ndim = x.ndim()
for i in range(x.ndim() - 1):
grouped_shape.append(shape(x, i))
out_shape.append(shape(x, i))
grouped_shape.extend(
[self.num_blocks, self.in_features // self.num_blocks])
out_shape.append(self.out_features)
x = x.view(concat(grouped_shape)).permute([i for i in range(ndim - 2)] +
[-2, -3, -1])
x = matmul(x, weight)
x = x.permute([i for i in range(ndim - 2)] + [-2, -3, -1])
if self.bias is not None and not self.fuse_bias:
bias = cast(self.bias.value, x.dtype)
x = x + bias
x = x.view(concat(out_shape))
if self.gather_output and self.tp_size > 1 and self.tp_group is not None:
# [dim0, local_dim] -> [dim0 * tp_size, local_dim] --> [dim0, local_dim * tp_size]
x = allgather(x, self.tp_group, gather_dim=-1)
return x
def forward(self, x):
return self.multiply_gather(x, self.weight.value)
def weight_loader(self, mapping: Mapping, param: Parameter,
loaded_weight: torch.Tensor):
tp_rank = mapping.tp_rank
output_dim = 0
shard_size = param._shape[output_dim]
start_idx = tp_rank * shard_size
loaded_weight = loaded_weight.narrow(output_dim, start_idx, shard_size)
param.value = loaded_weight
class RgLru(Module):
def __init__(self,
lru_width,
num_heads=1,
dtype=None,
tp_group=None,
tp_size=1):
super().__init__()
self.lru_width = lru_width
self.dtype = dtype
self.num_heads = num_heads
self.tp_group = tp_group
self.tp_size = tp_size
self.recurrent_param = Parameter(shape=(self.lru_width //
self.tp_size, ),
dtype=self.dtype)
self.input_gate = GroupedLinear(self.lru_width,
self.lru_width,
self.num_heads,
dtype=self.dtype,
tp_group=self.tp_group,
tp_size=self.tp_size,
gather_output=False,
fuse_bias=True)
self.recurrent_gate = GroupedLinear(self.lru_width,
self.lru_width,
self.num_heads,
dtype=self.dtype,
tp_group=self.tp_group,
tp_size=self.tp_size,
gather_output=False,
fuse_bias=True)
def forward(self,
x: Tensor,
y: Tensor,
y_bias: Tensor,
lru_state: Tensor,
host_request_types: Tensor,
last_token_ids: Tensor,
slot_mapping: Optional[Tensor] = None):
gate_x = self.input_gate(x)
gate_a = self.recurrent_gate(x)
out, lru_state = rg_lru(input=x,
gate_x=gate_x,
gate_x_bias=self.input_gate.bias.value,
gate_a=gate_a,
gate_a_bias=self.recurrent_gate.bias.value,
y=y,
y_bias=y_bias,
state_or_ptr=lru_state,
A=self.recurrent_param.value,
host_request_types=host_request_types,
last_token_ids=last_token_ids,
dim=self.lru_width // self.tp_size,
dtype=self.dtype,
slot_mapping=slot_mapping)
return out, lru_state
class FusedRgLru(Module):
def __init__(self,
lru_width,
num_heads=1,
dtype=None,
tp_group=None,
tp_size=1):
super().__init__()
self.lru_width = lru_width
self.tp_size = tp_size
self.dtype = dtype
self.dim = self.lru_width // self.tp_size
self.block_size = self.lru_width // num_heads
self.recurrent_param = Parameter(shape=(self.lru_width // tp_size, ),
dtype=dtype)
self.gate = GroupedLinear(self.lru_width,
self.lru_width * 2,
num_heads,
dtype=dtype,
tp_group=tp_group,
tp_size=tp_size,
gather_output=False,
fuse_bias=True)
def forward(self,
x: Tensor,
y: Tensor,
y_bias: Tensor,
lru_state: Tensor,
host_request_types: Tensor,
last_token_ids: Tensor,
slot_mapping: Optional[Tensor] = None):
gate = self.gate(x)
out, lru_state = rg_lru(input=x,
gate=gate,
gate_bias=self.gate.bias.value,
block_size=self.block_size,
y=y,
y_bias=y_bias,
state_or_ptr=lru_state,
A=self.recurrent_param.value,
host_request_types=host_request_types,
last_token_ids=last_token_ids,
dim=self.dim,
dtype=self.dtype,
slot_mapping=slot_mapping)
return out, lru_state
class Recurrent(Module):
def __init__(
self,
width,
lru_width,
d_conv=4,
num_heads=1,
dtype=None,
tp_group=None,
tp_size=1,
):
super().__init__()
self.width = width
self.lru_width = lru_width
self.d_conv = d_conv
self.dtype = dtype
self.linear_x = ColumnLinear(self.width,
self.lru_width,
dtype=dtype,
tp_group=tp_group,
tp_size=tp_size,
gather_output=False)
self.linear_y = ColumnLinear(self.width,
self.lru_width,
bias=False,
dtype=dtype,
tp_group=tp_group,
tp_size=tp_size,
gather_output=False)
self.y_bias = Parameter(shape=(self.lru_width // tp_size, ),
dtype=dtype)
self.conv1d = MambaConv1d(self.lru_width // tp_size,
self.d_conv,
dtype=self.dtype,
apply_silu=False)
self.rg_lru = RgLru(self.lru_width,
num_heads=num_heads,
dtype=dtype,
tp_group=tp_group,
tp_size=tp_size)
self.linear_out = RowLinear(self.lru_width,
self.width,
dtype=dtype,
tp_group=tp_group,
tp_size=tp_size)
def forward(self,
hidden_states: Tensor,
conv_state: Tensor,
lru_state: Tensor,
host_request_types: Tensor,
last_token_ids: Tensor,
host_context_lengths: Optional[Tensor] = None,
slot_mapping: Optional[Tensor] = None,
conv_indices: Optional[Tensor] = None):
'''
Parameters:
hidden_states: [B, L, D] or [T, D]
conv_state: [B, W, D] or [1] of type int64 for paged state
lru_state: [B, N] or [1] of type int64 for paged state
host_request_types: [B]
last_token_ids: [B]
host_context_lengths: [B]
slot_mapping: [B]
conv_indices: [B]
'''
# y branch
y = self.linear_y(hidden_states)
# x branch
x = self.linear_x(hidden_states)
x_conv, conv_state = self.conv1d(x, conv_state, host_request_types,
last_token_ids, host_context_lengths,
slot_mapping, conv_indices)
# rg-lru
out, lru_state = self.rg_lru(x_conv, y, self.y_bias.value, lru_state,
host_request_types, last_token_ids,
slot_mapping)
# linear out
out = self.linear_out(out)
return out, conv_state, lru_state