-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_doc_discovery.py
246 lines (203 loc) · 8.8 KB
/
run_doc_discovery.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
import logging
import os
import faiss
import shutil
import sys
import json
import time
from tqdm import tqdm
import copy
import argparse
from typing import Any, Dict, List, Optional
from pymongo import MongoClient
from llama_index.core import StorageContext, Settings, Document, VectorStoreIndex, load_index_from_storage
from llama_index.core.query_engine import RetrieverQueryEngine
from llama_index.core.schema import TextNode
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
from llama_index.embeddings.openai import OpenAIEmbedding
from llama_index.retrievers.bm25 import BM25Retriever
from llama_index.llms.openai import OpenAI
import sys
sys.path.append('.')
from tasks.common import trace_langfuse
from tasks.kilt_utils import normalize_answer
logging.basicConfig(stream=sys.stdout, level=logging.INFO)
def get_abstract(paragraphs: List[str]) -> str:
res = []
for p in paragraphs: # paragraphs[0] is the title
if p.startswith('Section::::') or p.startswith('BULLET::::'):
break
res.append(p)
return '\n'.join(res).strip()
def get_nodes(max_documents):
mongo_client = MongoClient("mongodb://localhost:27017/")
db = mongo_client["nba-datalake"]["wiki-documents"]
num_docs = db.count_documents({})
nodes = []
for page in tqdm(db.find(), total=num_docs):
if max_documents and len(nodes) > max_documents:
break
wikipedia_id = page["wikipedia_id"]
wikipedia_title = page["wikipedia_title"]
page_category = page["categories"]
abstract = get_abstract(page["text"])
if not abstract:
print('Warning: empty abstract for', wikipedia_title)
node = TextNode(
text=abstract,
metadata={
"wikipedia_id": wikipedia_id,
"wikipedia_title": wikipedia_title,
"categories": page_category,
},
excluded_llm_metadata_keys=["wikipedia_id", "categories"],
excluded_embed_metadata_keys=["wikipedia_id", "categories"],
metadata_seperator="::",
metadata_template="{key}=>{value}",
text_template="Metadata: {metadata_str}\n-----\nContent: {content}",
)
nodes.append(node)
return nodes
def get_doc_index(emb_model, index_type="default", max_documents=None):
assert index_type == "default"
if emb_model.startswith('text-embedding'):
Settings.embed_model = OpenAIEmbedding(model=emb_model, embed_batch_size=1000)
else:
Settings.embed_model = HuggingFaceEmbedding(emb_model)
persist_dir = os.path.join("indices", 'doc_' + index_type + '_' + emb_model.replace('/', '--'))
if not (os.path.exists(persist_dir) and os.listdir(persist_dir)):
t0 = time.time()
nodes = get_nodes(max_documents=max_documents)
created_index = VectorStoreIndex(nodes, show_progress=True)
created_index.storage_context.persist(persist_dir=persist_dir)
print(f"Index created in {time.time() - t0:.2f} seconds")
t0 = time.time()
storage_context = StorageContext.from_defaults(persist_dir=persist_dir)
index = load_index_from_storage(storage_context)
print(f"Index loaded in {time.time() - t0:.2f} seconds")
return index
def get_doc_query_engine(
llm, retriever, doc_top_k, index_type="default", max_documents=None,
):
Settings.llm = OpenAI(temperature=0, model=llm)
if retriever.lower() == "bm25":
nodes = get_nodes(max_documents)
retriever = BM25Retriever.from_defaults(nodes=nodes, similarity_top_k=doc_top_k)
query_engine = RetrieverQueryEngine(
retriever=retriever,
)
else:
index = get_doc_index(retriever, index_type, max_documents)
query_engine = index.as_query_engine(
similarity_top_k=doc_top_k,
verbose=True,
)
return query_engine
@trace_langfuse(name="doc_discovery")
def get_responses(engine, dataset) -> List[dict]:
all_response = []
for d in dataset:
response = engine.query(d["question"])
d = copy.deepcopy(d)
d['model_response'] = str(response)
d['model_provenance'] = {
'docs': [{
'wikipedia_title': d1['wikipedia_title'],
} for d1 in response.metadata.values()]
}
all_response.append(d)
return all_response
def precision_at_k(retrieved: list[str], relevant: list[str], k: int) -> float:
return len(set(retrieved[:k]) & set(relevant)) / k
def recall_at_k(retrieved: list[str], relevant: list[str], k: int) -> float:
return len(set(retrieved[:k]) & set(relevant)) / len(relevant)
def r_precision(retrieved: list[str], relevant: list[str]) -> float:
return precision_at_k(retrieved, relevant, len(relevant)) if relevant else 0.0
def evaluate(all_response: List[dict]) -> dict:
res = {
'metrics': {},
'responses': []
}
ks = [1, 2, 3, 5, 10, 20]
# max_k = max(ks)
# assert max_k <= all(max_k <= len(d['model_provenance']['spans']) for d in all_response)
for d in all_response:
d = copy.deepcopy(d)
# Compute accuracy
d['metric_accuracy'] = float(normalize_answer(d["answer"]) in normalize_answer(d["model_response"]))
# Compute retrieval metrics
retrieved = [doc['wikipedia_title'] for doc in d['model_provenance']['docs']]
relevant = list(set(span['wikipedia_title'] for span in d['provenance_doc']['paragraphs']))
d['metric_r_precision'] = r_precision(retrieved, relevant)
for k in ks:
d[f'metric_precision@{k}'] = precision_at_k(retrieved, relevant, k)
for k in ks:
d[f'metric_recall@{k}'] = recall_at_k(retrieved, relevant, k)
res['responses'].append(d)
metrics = ['accuracy', 'r_precision'] + [f'precision@{k}' for k in ks] + [f'recall@{k}' for k in ks]
for metric in metrics:
res['metrics'][metric] = sum(d[f'metric_{metric}'] for d in res['responses']) / len(res['responses'])
r_precision_by_category = {
'single': [],
'multi': [],
}
for d in res['responses']:
relevant = list(set(span['wikipedia_title'] for span in d['provenance_doc']['paragraphs']))
if len(relevant) == 1:
r_precision_by_category['single'].append(d['metric_r_precision'])
else:
r_precision_by_category['multi'].append(d['metric_r_precision'])
res['metrics']['r_precision_single'] = sum(r_precision_by_category['single']) / len(r_precision_by_category['single'])
res['metrics']['r_precision_multi'] = sum(r_precision_by_category['multi']) / len(r_precision_by_category['multi'])
return res
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--mode', default="graph", choices=["graph", "doc", "table", "all"])
parser.add_argument('--inputs', default=["benchmark/q_doc.json"], nargs="+")
parser.add_argument('--output_dir', default='outputs/test_doc_discovery/')
parser.add_argument('--overwrite', action="store_true")
# parameters for mode=doc
parser.add_argument('--llm', default="gpt-3.5-turbo")
parser.add_argument('--doc_top_k', default=20, type=int)
# parser.add_argument('--chunk_size', default=512, type=int)
parser.add_argument('--index_type', default="default", choices=["default", "faiss", "duckdb"])
parser.add_argument('--retriever', default="BAAI/bge-base-en-v1.5")
args = parser.parse_args()
print(args)
print()
if args.overwrite and os.path.exists(args.output_dir):
shutil.rmtree(args.output_dir)
os.makedirs(args.output_dir, exist_ok=True)
response_output_path = os.path.join(args.output_dir, "responses.json")
if not os.path.exists(response_output_path):
# Get query engine
engine = get_doc_query_engine(
llm=args.llm,
retriever=args.retriever,
doc_top_k=args.doc_top_k,
index_type=args.index_type,
max_documents=None
)
# Load dataset
dataset = []
for path in args.inputs:
with open(path) as f:
dataset += json.load(f)
# Run queries
all_response = get_responses(engine, dataset)
with open(response_output_path, "w") as f:
json.dump(all_response, f, indent=2)
print(f'Responses saved to {response_output_path}')
with open(response_output_path) as f:
all_response = json.load(f)
print(f'Loaded {len(all_response)} responses from {response_output_path}')
# Evaluate and save metrics
result = evaluate(all_response)
for k, v in result['metrics'].items():
print(f"{k}: {v:.4f}")
result_output_path = os.path.join(args.output_dir, "result.json")
with open(result_output_path, "w") as f:
json.dump(result, f, indent=2)
print(f'Results saved to {result_output_path}')
if __name__ == "__main__":
main()