-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgenerate_modality_summary.py
133 lines (113 loc) · 5.84 KB
/
generate_modality_summary.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
import argparse
from pymongo import MongoClient
from typing import List
import numpy as np
import os
import json
from llama_index.graph_stores.neo4j import Neo4jGraphStore
from sklearn.cluster import KMeans
from sentence_transformers import SentenceTransformer
from langchain_core.output_parsers import StrOutputParser
from langchain_openai import ChatOpenAI
def get_centroid_titles(titles: List[str], model: str, n_clusters: int = 20):
model = SentenceTransformer(model)
embeddings = model.encode(titles, show_progress_bar=True)
embeddings = np.array(embeddings) # (n_samples, n_features)
kmeans = KMeans(n_clusters=n_clusters, random_state=0).fit(embeddings)
centroids = kmeans.cluster_centers_ # (n_clusters, n_features)
embeddings = embeddings / np.linalg.norm(embeddings, axis=1)[:, None]
centroids = centroids / np.linalg.norm(centroids, axis=1)[:, None]
cosine_sim = (embeddings @ centroids.T) # (n_samples, n_clusters)
most_similar_ids = np.argmax(cosine_sim, axis=0)
return [titles[i] for i in most_similar_ids]
def get_abstract(paragraphs: List[str]) -> str:
res = []
for p in paragraphs[1:]: # paragraphs[0] is the title
if p.startswith('Section::::') or p.startswith('BULLET::::'):
break
res.append(p)
return '\n'.join(res).strip()
def get_doc_prompt(emb_model: str, n_doc_examples: int = 50, with_categories=False, with_abstract=False):
client = MongoClient("mongodb://localhost:27017/")
db = client["nba-datalake"]["wiki-documents"]
docs = list(db.find({}, {'wikipedia_title': 1, '_id': 0, 'categories': 1, 'text': 1}))
text = []
for d in docs:
s = f'Title: {d["wikipedia_title"]}'
if with_categories:
s += f' Categories: {d["categories"]}'
if with_abstract:
s += f' Abstract: {get_abstract(d["text"])}'
text.append(s)
representative_titles = get_centroid_titles(text, emb_model, n_clusters=n_doc_examples)
prompt = 'Write a brief description for a document database. The description should be a single paragraph. Summarize the key information covered by this database.\n'
prompt += 'Here are the titles of some documents sampled from the database:\n'
for i, title in enumerate(representative_titles):
prompt += f'- {title}\n'
return prompt
def get_table_prompt(emb_model: str, n_table_examples: int = 50, no_header=False):
client = MongoClient("mongodb://localhost:27017/")
tables = []
for split in ["train", "test", "dev"]:
db = client["nba-datalake"][f"wiki-tables_{split}"]
tables += list(db.find({}))
text = []
for table in tables:
if no_header:
text.append(f'Table title: "{table["page_title"]} - {table["section_title"]}"')
else:
text.append(
f'Table title: "{table["page_title"]} - {table["section_title"]}" Table Columns: {table["header"]}')
representative_titles = get_centroid_titles(text, emb_model, n_clusters=n_table_examples)
prompt = 'Write a brief description for a table database. The description should be a single paragraph. Summarize the key information covered by this database.\n'
prompt += 'Here are the titles and schemas of some tables sampled from the database:\n'
for i, title in enumerate(representative_titles):
prompt += f'- {title}\n'
return prompt
def get_graph_prompt(relationship_only=False):
graph_store = Neo4jGraphStore(
username=os.environ.get("NEO4J_USERNAME"),
password=os.environ.get("NEO4J_PASSWORD"),
url="bolt://localhost:7687",
database="neo4j",
)
schema = graph_store.get_schema()
if relationship_only:
schema = schema.split('The relationships are the following:')[-1].strip()
prompt = 'Write a brief description for a graph database. The description should be a single paragraph. Summarize the key information covered by this database.\n'
prompt += f'Here is the schema of the graph database:\n'
prompt += f'{schema}'
return prompt
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--n_doc_examples', default=50, type=int)
parser.add_argument('--n_table_examples', default=50, type=int)
parser.add_argument('--emb_model', default="paraphrase-MiniLM-L6-v2")
parser.add_argument('--llm_model', default="gpt-4-turbo-preview")
parser.add_argument('--output_path', default="tasks/modality_summary_1.json")
args = parser.parse_args()
print(args)
print()
# graph_prompt = get_graph_prompt()
# doc_prompt = get_doc_prompt(args.emb_model, args.n_doc_examples)
# table_prompt = get_table_prompt(args.emb_model, args.n_table_examples)
prompts = {
'graph_no_properties': get_graph_prompt(relationship_only=True),
'graph_with_properties': get_graph_prompt(relationship_only=False),
'doc_title': get_doc_prompt(args.emb_model, args.n_doc_examples, with_categories=False, with_abstract=False),
'doc_title_categories': get_doc_prompt(args.emb_model, args.n_doc_examples, with_categories=True,
with_abstract=False),
'doc_title_abstract': get_doc_prompt(args.emb_model, args.n_doc_examples, with_categories=False,
with_abstract=True),
'table_title': get_table_prompt(args.emb_model, args.n_table_examples, no_header=True),
'table_title_header': get_table_prompt(args.emb_model, args.n_table_examples, no_header=False),
}
llm = ChatOpenAI(model=args.llm_model, temperature=0.)
chain = llm | StrOutputParser()
batch_response = chain.batch(list(prompts.values()))
output = {k: v for k, v in zip(prompts.keys(), batch_response)}
with open(args.output_path, 'w') as f:
json.dump(output, f, indent=2)
print(f'Output saved to {args.output_path}')
if __name__ == "__main__":
main()