-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodels.py
40 lines (33 loc) · 1.63 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
import math
from torch import nn
class FSRCNN(nn.Module):
def __init__(self, scale_factor, num_channels=1, d=56, s=12, m=4):
super(FSRCNN, self).__init__()
self.first_part = nn.Sequential(
nn.Conv2d(num_channels, d, kernel_size=5, padding=5//2),
nn.PReLU(d)
)
self.mid_part = [nn.Conv2d(d, s, kernel_size=1), nn.PReLU(s)]
for _ in range(m):
self.mid_part.extend([nn.Conv2d(s, s, kernel_size=3, padding=3//2), nn.PReLU(s)])
self.mid_part.extend([nn.Conv2d(s, d, kernel_size=1), nn.PReLU(d)])
self.mid_part = nn.Sequential(*self.mid_part)
self.last_part = nn.ConvTranspose2d(d, num_channels, kernel_size=9, stride=scale_factor, padding=9//2,
output_padding=scale_factor-1)
self._initialize_weights()
def _initialize_weights(self):
for m in self.first_part:
if isinstance(m, nn.Conv2d):
nn.init.normal_(m.weight.data, mean=0.0, std=math.sqrt(2/(m.out_channels*m.weight.data[0][0].numel())))
nn.init.zeros_(m.bias.data)
for m in self.mid_part:
if isinstance(m, nn.Conv2d):
nn.init.normal_(m.weight.data, mean=0.0, std=math.sqrt(2/(m.out_channels*m.weight.data[0][0].numel())))
nn.init.zeros_(m.bias.data)
nn.init.normal_(self.last_part.weight.data, mean=0.0, std=0.001)
nn.init.zeros_(self.last_part.bias.data)
def forward(self, x):
x = self.first_part(x)
x = self.mid_part(x)
x = self.last_part(x)
return x