-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCAddTensorTable.lua
43 lines (39 loc) · 1.27 KB
/
CAddTensorTable.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
local CAddTensorTable, parent = torch.class('nn.CAddTensorTable', 'nn.Module')
function CAddTensorTable:__init()
parent.__init(self)
self.gradInput = {}
end
-- input is a table with 2 entries. input[1] is the vector to be added.
-- input[2] is the table to which we add the vector
function CAddTensorTable:updateOutput(input)
local currentOutput = {}
for i=1,#input[2] do
currentOutput[i] = currentOutput[i] or input[1].new()
currentOutput[i]:resizeAs(input[1])
currentOutput[i]:copy(input[2][i])
currentOutput[i]:add(input[1])
end
for i = #input[2]+1, #currentOutput do
currentOutput[i] = nil
end
self.output = currentOutput
return self.output
end
function CAddTensorTable:updateGradInput(input, gradOutput)
self.gradInput[1] = self.gradInput[1] or input[1].new()
self.gradInput[1]:resizeAs(input[1])
self.gradInput[1]:copy(gradOutput[1])
for i=2, #input[2] do
self.gradInput[1]:add(gradOutput[i])
end
self.gradInput[2] = self.gradInput[2] or {}
for i=1,#input[2] do
self.gradInput[2][i] = self.gradInput[2][i] or input[1].new()
self.gradInput[2][i]:resizeAs(input[1])
self.gradInput[2][i]:copy(gradOutput[i])
end
for i=#input[2]+1, #self.gradInput[2] do
self.gradInput[2][i] = nil
end
return self.gradInput
end