forked from soumith/cudnn.torch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfind.lua
587 lines (518 loc) · 21.9 KB
/
find.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
local ffi = require 'ffi'
local find = {}
find.__index = find
-- default is to get verbose on errors
find.verbose=false
find.verboseError=true
find.verboseFallback=true
-- constants to index array tables below
local Fwd, BwdFilter, BwdData = 1, 2, 3
-- constants to select algo family, to index algoFamilies
local GetFamily, FindFamily, FindExFamily = 1,2,3
local warmupIterations = 0
local Meg = 1024*1024
-- cudnnGetxxx APIs: default, when cudnn.benchmark == false
local getAlgos = {'cudnnGetConvolutionForwardAlgorithm',
'cudnnGetConvolutionBackwardFilterAlgorithm',
'cudnnGetConvolutionBackwardDataAlgorithm'}
local getWSAlgos = {'cudnnGetConvolutionForwardWorkspaceSize',
'cudnnGetConvolutionBackwardFilterWorkspaceSize',
'cudnnGetConvolutionBackwardDataWorkspaceSize'}
-- cudnnFindxxx APIs: default, when cudnn.benchmark == true
local findAlgos = {'cudnnFindConvolutionForwardAlgorithm',
'cudnnFindConvolutionBackwardFilterAlgorithm',
'cudnnFindConvolutionBackwardDataAlgorithm'}
-- cudnnFindxxxEx APIs: default, when cudnn.benchmark == true and cudnn.useFindEx == true
local findExAlgos = {'cudnnFindConvolutionForwardAlgorithmEx',
'cudnnFindConvolutionBackwardFilterAlgorithmEx',
'cudnnFindConvolutionBackwardDataAlgorithmEx'}
local algoFamilies = { getAlgos, findAlgos, findExAlgos}
local fwdAlgoNames = {
"IMPLICIT_GEMM",
"IMPLICIT_PRECOMP_GEMM",
"GEMM",
"DIRECT",
"FFT",
"FFT_TILING",
"WINOGRAD",
"WINOGRAD_NONFUSED"
}
local bwdFilterAlgoNames = {
"ALGO_0",
"ALGO_1",
"FFT",
"ALGO_3",
"WINOGRAD",
"WINOGRAD_NONFUSED"
}
local bwdDataAlgoNames = {
"ALGO_0",
"ALGO_1",
"FFT",
"FFT_TILING",
"WINOGRAD",
"WINOGRAD_NONFUSED"
}
local algoNames = {fwdAlgoNames, bwdFilterAlgoNames, bwdDataAlgoNames}
local function convDataString(layer)
local info = ''
if layer.convDescData then
local desc = layer.convDescData
info = ' convDesc=[mode : ' .. desc.mode .. ' datatype : ' .. desc.dataType .. ']'
end
return info .. ' hash=' .. layer.autotunerHash
end
local function verboseCall(layer, f, ...)
local status = cudnn.call(f, ...)
if (status ~= ffi.C.CUDNN_STATUS_SUCCESS) and (find.verbose or find.verboseError) then
print("\n" .. f .. " failed: ", tonumber(status), convDataString(layer))
end
return status
end
find.verboseCall = verboseCall
local function checkedCall(layer, f, ...)
local status = verboseCall(layer, f, ...)
if status ~= ffi.C.CUDNN_STATUS_SUCCESS then
local str = ffi.string(cudnn.C.cudnnGetErrorString(status))
error('Error in CuDNN: ' .. str .. ' ('..f..')')
end
return status
end
find.checkedCall = checkedCall
local function noFallback(layer)
if find.verbose or find.verboseFallback then
print("\nfind.defaultFallback: verboseCall failed for: ", convDataString(layer))
end
return false
end
local function fallbackWarning(layer, msg)
if find.verbose or find.verboseFallback then
print("\n *** find.verboseFallback: " .. msg ..
"\n *** Falling back to 32-bit math for: " .. convDataString(layer))
print(" *** [ Set cudnn.find.verboseFallback to false to disable this message ] *** ")
print(" *** [ Alternatively, you may force CUDNN to always operate on CudaHalfTensors via 32-bit float conversion, in Lua: ] ***\n"
.." *** [ cudnn.configureMath({ ['torch.CudaHalfTensor'] = 'CUDNN_DATA_FLOAT'} ] ***")
print(" *** [ Note: result may be faster or slower than native FP16, depending on your GPU and CUDNN operations ] *** ")
end
end
local function defaultFallback(layer, replay)
-- read conv descriptor
local convDescData = layer.convDescData
if convDescData and convDescData.dataType == "CUDNN_DATA_HALF" then
fallbackWarning(layer, replay
and "16->32 bit fallback replay "
or "No native FP16 algo found, will try 32-bit math")
-- update our record with fallback value
convDescData.dataType = "CUDNN_DATA_FLOAT"
-- update the descriptor in CUDNN
cudnn.setConvolutionDescriptor(convDescData, layer.convDesc)
return true
else
return false
end
end
-- Find State and Cache (per device)
local function initState(id)
local finder = {}
setmetatable(finder,find)
finder.id = id
finder:resetAlgorithmCache()
finder.iteration = 0
if cutorch.hasHalf then
finder.fallback = defaultFallback
end
return finder
end
local finders = nil
-- this resets algorithm cache for device
local function setAlgoFamily()
return cudnn.benchmark
and (cudnn.useFindEx and FindExFamily or FindFamily)
or GetFamily
end
function find:resetAlgorithmCache()
self.calculatedWorkspaceSize = {}
self:calculateMaxWorkspaceSize()
self.algoFamily = setAlgoFamily()
self.autotunerCache = {{}, {}, {}}
end
function find.reset(warmup)
cutorch:synchronizeAll()
finders = {}
warmupIterations = warmup or 0
end
function find.get()
local device = cutorch.getDevice()
local it = finders[device]
if not it then
it = initState(device)
finders[device] = it
end
return it
end
function find:lookup(layer, findAPI_idx)
return self.autotunerCache[findAPI_idx][layer.autotunerHash]
end
-- record algo, memory in cache
function find:store(layer, findAPI_idx, cachedAlgo)
if warmupIterations==0 then
self.autotunerCache[findAPI_idx][layer.autotunerHash] = cachedAlgo
end
end
function find:calculateMaxWorkspaceSize(reserve, fraction)
if not reserve or reserve < cudnn.reservedGPUBytes then reserve = cudnn.reservedGPUBytes end
local max_fraction = cudnn.maxWorkspaceGPUMemPercent/100
if not fraction or fraction > max_fraction then fraction = max_fraction end
local buf, curSize = cudnn.getSharedWorkspace()
-- check current usage
local freeMemory, totalMemory = cutorch.getMemoryUsage(self.id)
local newSize= (freeMemory+curSize-reserve) * fraction
self.maxWorkspaceSize = newSize
if find.verbose then
print("calculateMaxWorkspaceSize Memory: ", freeMemory/Meg, "M free, " , totalMemory/Meg, "M total, " , self.maxWorkspaceSize/Meg, "M Workspace" )
end
end
function find:setCalculatedWorkspaceSize(greater)
local device = cutorch.getDevice()
for stream,bytes in pairs (self.calculatedWorkspaceSize) do
cudnn.setSharedWorkspaceSize(bytes, greater, device, stream)
end
end
function find:pickAlgoAndCalculateWorkspaceSize(cachedAlgo)
local stream = cutorch.getStream()
if not self.calculatedWorkspaceSize[stream] then
self.calculatedWorkspaceSize[stream] = 0
end
if self.calculatedWorkspaceSize[stream] > self.maxWorkspaceSize then
self.calculatedWorkspaceSize[stream] = self.maxWorkspaceSize
end
-- find algo with a size that keeps the sum of stream sizes within ws size
for a=1,#cachedAlgo do
local algoSize = cachedAlgo[a].memory
local delta = algoSize - self.calculatedWorkspaceSize[stream]
if delta > 0 then
-- check if we still fit
local totalWS = 0
for s,sz in pairs(self.calculatedWorkspaceSize) do
totalWS = totalWS + sz
end
if totalWS + delta < self.maxWorkspaceSize then
self.calculatedWorkspaceSize[stream] = algoSize
return a
end
else
-- keep previously calculated WS size for the stream
return a
end -- delta
end
return 0
end
function find:reserveBytes(layer)
local reserve = cudnn.reservedGPUBytes
-- todo: implement layer method returning memory allocation size
reserve = reserve + 2*layer.weight:nElement()*layer.weight:elementSize()
return reserve
end
function find:verifyReserveForWeights(layer)
local freeMemory, totalMemory = cutorch.getMemoryUsage(self.id)
local reserve = self:reserveBytes(layer)
if freeMemory < reserve then
-- let's make sure we still have space to reallocate our data
cudnn.adjustSharedWorkspaceSize(freeMemory - reserve)
end
end
function find:checkIteration(layer, findAPI_idx)
if warmupIterations == 0 then return end
if not layer.iteration then layer.iteration = {0,0,0} end
-- find last iteration
local max_iter = 0
for k,v in pairs(layer.iteration) do
if v > max_iter then max_iter = v end
end
if (self.iteration < max_iter and max_iter > 1) then
self.iteration = max_iter
if find.verbose then print ("CUDNN Find SM: iteration #", self.iteration) end
if warmupIterations > 0 then warmupIterations = warmupIterations -1 end
end
layer.iteration[findAPI_idx] = layer.iteration[findAPI_idx] + 1
end
local cachedAlgo
local nAlgos = 10
-- pre-allocated parameters for the APIs: Fwd, Bwd and BwdD use all different enums
local perfResultsArray = { ffi.new('cudnnConvolutionFwdAlgoPerf_t[?]', nAlgos),
ffi.new('cudnnConvolutionBwdFilterAlgoPerf_t[?]', nAlgos),
ffi.new('cudnnConvolutionBwdDataAlgoPerf_t[?]', nAlgos) }
local numPerfResults = ffi.new('int[1]')
local algType = { ffi.new('cudnnConvolutionFwdAlgo_t[?]', 1),
ffi.new('cudnnConvolutionBwdFilterAlgo_t[?]', 1),
ffi.new('cudnnConvolutionBwdDataAlgo_t[?]', 1)}
function find:setupAlgo(layer, findAPI_idx, algSearchMode, params)
local retAlgo
local cacheHit = '[found in cache]'
local useFallback = false
-- Check if it's a new iteration, decrement warmup
self:checkIteration(layer, findAPI_idx)
local curWorkspace, curWorkspaceSize = cudnn.getSharedWorkspace()
local validResults = 0
local API = algoFamilies[self.algoFamily][findAPI_idx]
local perfResults = perfResultsArray[findAPI_idx]
-- try to find algo in the cache first
cachedAlgo = self:lookup(layer, findAPI_idx)
if cachedAlgo then
validResults = #cachedAlgo
useFallback = cachedAlgo[1].fallback
-- need to replay fallback on cache hit
if useFallback then self.fallback(layer, true) end
else
cacheHit = ''
cachedAlgo = {}
--algo family might have changed, reset it
self.algoFamily = setAlgoFamily()
local API = algoFamilies[self.algoFamily][findAPI_idx]
if self.algoFamily == FindExFamily then
-- clone output tensor
local paramstmp = params[7]
params[7] = paramstmp:clone()
-- temporarily set WS size to the max
self:calculateMaxWorkspaceSize()
cudnn.setSharedWorkspaceSize(self.maxWorkspaceSize)
else
if self.algoFamily == FindFamily then
-- Find() APIs use free GPU memory to find algo, release our WS bytes
cudnn.setSharedWorkspaceSize(0)
end
end
local function callCudnn(layer)
local ret = 0
validResults = 0
if not layer.convDesc or not layer.convDesc[0] then
error("No convDesc set on layer!")
end
if self.algoFamily == FindExFamily then
-- query temp workspace size
local tempWorkspace, tempWorkspaceSize = cudnn.getSharedWorkspace()
ret = verboseCall(layer, API,
cudnn.getHandle(),
params[1], params[2]:data(), params[3], params[4]:data(), layer.convDesc[0], params[6], params[7]:data(),
nAlgos, numPerfResults, perfResults, tempWorkspace, tempWorkspaceSize)
params[7]=paramstmp
else
if self.algoFamily == FindFamily then
ret = verboseCall(layer, API,
cudnn.getHandle(),
params[1], params[3], layer.convDesc[0], params[6],
nAlgos, numPerfResults, perfResults)
else
-- GetFamily: emulate findXXX results layout
numPerfResults[0]=1
perfResults[0].algo = 0
perfResults[0].memory = 0
perfResults[0].status = 1
local algWorkspaceLimit = layer.workspace_limit
or (layer.nInputPlane * layer.kH * layer.kW * layer.weight.elementSize())
ret = cudnn.call(API,
cudnn.getHandle(),
params[1], params[3], layer.convDesc[0], params[6],
algSearchMode, algWorkspaceLimit, algType[findAPI_idx])
if ret ~= 0 then
return ret
end
local retAlgo = algType[findAPI_idx][0]
if find.verbose then
print(string.format(
"\n" .. API .. ": %d (ws limit: %d) mode = %s",
tonumber(retAlgo),
algWorkspaceLimit,
algSearchMode))
end
local bufSize = torch.LongTensor(1)
ret = cudnn.call(getWSAlgos[findAPI_idx],
cudnn.getHandle(),
params[1], params[3], layer.convDesc[0], params[6],
retAlgo, bufSize:data())
if ret ~= 0 then
return ret
end
if find.verbose then
print(string.format(
"\n" .. getWSAlgos[findAPI_idx] .. ": bufSize: %d, current ws: %d",
tonumber(bufSize[1]), tonumber(curWorkspaceSize)))
end
perfResults[0].algo = retAlgo
perfResults[0].memory = bufSize[1]
perfResults[0].status = ret
end
end
if find.verbose then
print("\ncallCudnn: ", API, "returned ", numPerfResults[0], " results , status = " , ret, "status[0] = " , perfResults[0].status, "\n")
end
if ret ~= 0 then
return ret
end
for r=0,numPerfResults[0]-1 do
local res = perfResults[r]
if res.status == 0 then
validResults = validResults+1
cachedAlgo[validResults] = { algo = tonumber(res.algo),
memory = tonumber(res.memory),
time = tonumber(res.time),
status = tonumber(res.status),
fallback = useFallback}
if find.verbose then
local fallback = ''
if (useFallback) then fallback = "[FALLBACK]" end
print(string.format(
"\n" .. API .. " algo[%d]: %s (%d, status: %d), time: %.04f, memory: %8d, count: %d"
.. " %s " .. cacheHit .. fallback,
validResults,
algoNames[findAPI_idx][cachedAlgo[validResults].algo+1], cachedAlgo[validResults].algo, cachedAlgo[validResults].status,
cachedAlgo[validResults].time, cachedAlgo[validResults].memory, r, convDataString(layer)))
end
end
end
if validResults < 1 then
return 1
end
return 0
end
local function performanceFallback(layer)
-- read conv descriptor
local convDescData = layer.convDescData
if convDescData and convDescData.dataType == "CUDNN_DATA_HALF" then
local savedResults = cachedAlgo
local savedNum = validResults
cachedAlgo = {}
validResults = 0
useFallback = true
-- update our record with fallback value
layer.convDescData.dataType = "CUDNN_DATA_FLOAT"
-- update the descriptor in CUDNN
cudnn.setConvolutionDescriptor(layer.convDescData, layer.convDesc)
-- do the actual call
local status = callCudnn(layer)
-- check if we got better results with float32
if status == 0 and validResults > 0 and cachedAlgo[1].time < savedResults[1].time then
if find.verbose or find.verboseFallback then
local msg = string.format("find.performanceFallback: found 32-bit float op is faster (%f) than FP16(%f), memory increase: %fM",
cachedAlgo[1].time, savedResults[1].time,
(tonumber(cachedAlgo[1].memory)-tonumber(savedResults[1].memory))/Meg)
fallbackWarning(layer, msg)
end
return
end
-- restore if we didn't
cachedAlgo = savedResults
validResults = savedNum
-- update our record with fallback value
layer.convDescData.dataType = "CUDNN_DATA_HALF"
-- update the descriptor in CUDNN
cudnn.setConvolutionDescriptor(layer.convDescData, layer.convDesc)
end
end
-- do the actual call
local status = callCudnn(layer)
if status ~= 0 or validResults < 1 then
if self.fallback and self.fallback(layer) then
useFallback = true
status = callCudnn(layer)
end
-- check again
if status ~= 0 or validResults < 1 then
error (API .. ' failed, sizes: ' .. convDataString(layer))
end
else
-- if we are running Find or FindEx in native fp16, check if this algo is actiually faster in pseudo
if self.algoFamily ~= GetFamily then
performanceFallback(layer)
end
end
self:store(layer, findAPI_idx, cachedAlgo)
-- restore WS size if we fiddled with it
if self.algoFamily ~= GetFamily then
cudnn.setSharedWorkspaceSize(curWorkspaceSize)
end
end
-- this may return different algo if size does not fit
retAlgo = self:pickAlgoAndCalculateWorkspaceSize(cachedAlgo)
if retAlgo > 0 then
self:setCalculatedWorkspaceSize(true)
else
-- TODO: fallback to recalculate
error("No algorithms found that would fit in free GPU memory")
return -1
end
if cudnn.verbose or find.verbose then
local freeMemory, totalMemory = cutorch.getMemoryUsage(self.id)
local fallback = ""
if (useFallback) then fallback = "[FALLBACK]" end
print(string.format(
"\n" .. API .. ": %s(%d)[%d of %d] Workspace: %8fM (current ws size %fM, max: %dM free: %dM) %s" .. cacheHit .. fallback,
algoNames[findAPI_idx][cachedAlgo[retAlgo].algo+1], cachedAlgo[retAlgo].algo, retAlgo, #cachedAlgo,
tonumber(cachedAlgo[retAlgo].memory)/Meg, curWorkspaceSize/Meg, self.maxWorkspaceSize/Meg, freeMemory/Meg, convDataString(layer)))
end
return cachedAlgo[retAlgo].algo
end
function find:prepare(layer, input_slice, output_slice)
local function shape(x)
return table.concat(x:size():totable(),',')
end
local function vals(x)
return table.concat(x,',')
end
layer.autotunerHash =
'-dimA' .. shape(input_slice)
..' -filtA' .. shape(layer.weight)
..' ' .. shape(output_slice)
..' -padA' .. vals(layer.pad)
..' -convStrideA' .. vals(layer.stride)
.. ' ' .. cudnn.configmap(torch.type(layer.weight))
layer.iteration = nil
layer.input_slice = input_slice
layer.output_slice = output_slice
end
local function setupWS(layer, params, algo, fn)
local bufSize = torch.LongTensor(1)
cudnn.errcheck(getWSAlgos[fn],
cudnn.getHandle(),
params[1], params[3], layer.convDesc[0], params[6],
algo, bufSize:data())
cudnn.setSharedWorkspaceSize(bufSize[1], true)
end
function find:forwardAlgorithm(layer, params)
if layer.fmode then
setupWS(layer, params, layer.fmode, Fwd)
return layer.fmode
end
local algSearchMode = 'CUDNN_CONVOLUTION_FWD_SPECIFY_WORKSPACE_LIMIT'
if layer.fastest_mode or cudnn.fastest == true then
algSearchMode = 'CUDNN_CONVOLUTION_FWD_PREFER_FASTEST'
end
return self:setupAlgo(layer, Fwd, algSearchMode, params)
end
function find:backwardFilterAlgorithm(layer, params)
-- Check if we are in "sticky" mode
if layer.bwmode then
setupWS(layer, params, layer.bwmode, BwdFilter)
return layer.bwmode
end
local algSearchMode = 'CUDNN_CONVOLUTION_BWD_FILTER_NO_WORKSPACE'
if layer.fastest_mode or cudnn.fastest == true then
algSearchMode = 'CUDNN_CONVOLUTION_BWD_FILTER_PREFER_FASTEST'
end
local ret = self:setupAlgo(layer, BwdFilter, algSearchMode, params)
return ret
end
function find:backwardDataAlgorithm(layer, params)
-- Check if we are in "sticky" mode
if layer.bdmode then
setupWS(layer, params, layer.bdmode, BwdData)
return layer.bdmode
end
local algSearchMode = 'CUDNN_CONVOLUTION_BWD_DATA_NO_WORKSPACE'
if layer.fastest_mode or cudnn.fastest == true then
algSearchMode = 'CUDNN_CONVOLUTION_BWD_DATA_PREFER_FASTEST'
end
return self:setupAlgo(layer, BwdData, algSearchMode, params)
end
find.reset()
return find