forked from uhh-lt/path2vec
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnode_embed.py
145 lines (118 loc) · 5.36 KB
/
node_embed.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
# -*- coding: utf-8 -*-
from __future__ import print_function
import collections
import math
import numpy as np
import os
import random
import tensorflow as tf
import networkx as nx
import matplotlib as plt
import zipfile
from matplotlib import pylab
from six.moves import range
from six.moves.urllib.request import urlretrieve
from sklearn.manifold import TSNE
import argparse
DIM = 5
NUM_SAMPLES = 4
NUM_ITER = 600
DEVICE = '/cpu:0'
def read_edges(filename):
""" Read edges from a file """
g = nx.read_edgelist(filename, nodetype=str,create_using=nx.DiGraph())
return g
def build_dataset(graph):
""" Load the data from a networkx graph. """
index = 0
number_of_edges = graph.number_of_edges()
dataset = np.ndarray(shape=(number_of_edges), dtype=np.int32)
labels = np.ndarray(shape=(number_of_edges, 1), dtype=np.int32)
dictionary = {k: v for v, k in enumerate(graph.nodes)}
reverse_dictionary = dict(zip(dictionary.values(), dictionary.keys()))
for e in graph.edges:
dataset[index] = dictionary[e[0]]
labels[index] = dictionary[e[1]]
index = index+1
return dataset, labels, dictionary, reverse_dictionary
def plot(embeddings, labels):
""" Plot the obtained embeddings """
assert embeddings.shape[0] >= len(labels), 'More labels than embeddings'
pylab.figure(figsize=(15,15)) # in inches
for i, label in enumerate(labels):
x, y = embeddings[i,:]
pylab.scatter(x, y)
pylab.annotate(label, xy=(x, y), xytext=(5, 2), textcoords='offset points', ha='right', va='bottom')
pylab.show()
def run(graph_fpath, embedding_size=DIM, num_sampled=NUM_SAMPLES, num_steps=NUM_ITER, valid_size=3, num_points=20, batch_size=120):
""" Train graph embeddings """
# Load the data
valid_examples = np.array(random.sample(range(10), valid_size))
G = read_edges(graph_fpath)
node_size = G.number_of_nodes()
edges_size = G.number_of_edges()
print("Number of nodes: {}".format(node_size))
data, labels, dictionary, rdictionary = build_dataset(G)
# Construct the computational graph
graph = tf.Graph()
with tf.device(DEVICE):
train_dataset = tf.placeholder(tf.int32, shape=[edges_size])
train_labels = tf.placeholder(tf.int32, shape=[edges_size, 1])
valid_dataset = tf.constant(valid_examples, dtype=tf.int32)
embeddings = tf.Variable(
tf.random_uniform([node_size, embedding_size], -1.0, 1.0))
softmax_weights = tf.Variable(
tf.truncated_normal([node_size, embedding_size],
stddev=1.0 / math.sqrt(embedding_size)))
softmax_biases = tf.Variable(tf.zeros([node_size]))
embed = tf.nn.embedding_lookup(embeddings, train_dataset)
loss = tf.reduce_mean(
tf.nn.nce_loss(
weights=softmax_weights,
biases=softmax_biases,
inputs=embed,
labels=train_labels,
num_sampled=num_sampled,
num_classes=node_size))
optimizer = tf.train.AdagradOptimizer(1.0).minimize(loss)
norm = tf.sqrt(tf.reduce_sum(tf.square(embeddings), 1, keep_dims=True))
normalized_embeddings = embeddings / norm
valid_embeddings = tf.nn.embedding_lookup(normalized_embeddings, valid_dataset)
similarity = tf.matmul(valid_embeddings, tf.transpose(normalized_embeddings))
# Perform the computation
with tf.Session(graph=graph) as session:
tf.initialize_all_variables().run()
print('Variables Initialized......')
average_loss = 0
for step in range(num_steps):
feed_dict = {train_dataset : data, train_labels : labels}
_, l = session.run([optimizer, loss], feed_dict=feed_dict)
print('Average loss at step {}: {}'.format(step, l))
if step % 100 == 0:
sim = similarity.eval()
for i in range(valid_size):
valid_word = rdictionary[valid_examples[i]]
top_k = 8 # number of nearest neighbors
nearest = (-sim[i, :]).argsort()[1:top_k+1]
log = 'Nearest to {}:'.format(valid_word)
for k in range(top_k):
close_word = rdictionary[nearest[k]]
log = '%s %s,' % (log, close_word)
print(log)
final_embeddings = normalized_embeddings.eval()
# Make a TSNE plot
tsne = TSNE(perplexity=30, n_components=2, init='pca', n_iter=5000)
two_d_embeddings = tsne.fit_transform(final_embeddings[1:num_points+1, :])
words = [rdictionary[i] for i in range(1, num_points+1)]
plot(two_d_embeddings, words)
def main():
parser = argparse.ArgumentParser(description='Train graph embeddings.')
parser.add_argument('graph', help="Path to an input graph in the TSV format (src<TAB>dst).")
parser.add_argument('-dim', help="Number of dimensions (default is {}).".format(DIM), default=DIM, type=int)
parser.add_argument('-num_samples', help="Set size of word vectors (default is {}).".format(NUM_SAMPLES),
default=NUM_SAMPLES, type=int)
parser.add_argument('-iter', help="Number of iterations. (default is {}).".format(NUM_ITER), default=NUM_ITER, type=int)
args = parser.parse_args()
run(args.graph, args.dim, args.num_samples, args.iter)
if __name__ == '__main__':
main()