forked from uhh-lt/path2vec
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhelpers.py
388 lines (332 loc) · 14.4 KB
/
helpers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
#!/usr/bin/python3
# coding: utf-8
import sys
import numpy as np
from numpy import float32 as real
import gzip
from itertools import combinations
from keras.callbacks import Callback
from keras.preprocessing.sequence import skipgrams
from keras import backend
from gensim import utils
import json
import time
from nltk.corpus import wordnet as wn
import random
from smart_open import smart_open
neighbors_dict = dict()
current_pos_samples = [[], []]
def custom_loss(reg_1_output, reg_2_output, beta=0.01, gamma=0.01):
def my_loss(y_true, y_pred):
if len(reg_1_output) > 0 and len(reg_2_output) > 0:
alpha = 1 - (beta + gamma)
# Mean squared error (main loss):
m_loss = alpha * backend.mean(backend.square(y_pred - y_true), axis=-1)
# Auxiliary losses (we are maximizing similarity to neighbors in the graph)
m_loss -= beta * (sum(reg_1_output) / len(reg_1_output))
m_loss -= gamma * (sum(reg_2_output) / len(reg_2_output))
else:
m_loss = backend.mean(backend.square(y_pred - y_true), axis=-1)
return m_loss
return my_loss
def build_neighbors_map(vocab_dict, full_graph=None):
global neighbors_dict
neighbor_nodes = []
for vocab, index in vocab_dict.items():
if vocab == 'UNK':
continue
if full_graph is None and vocab.count('.') < 2:
continue
if full_graph:
neighbors = full_graph.neighbors(vocab)
for node in neighbors:
neighbor_nodes.append(vocab_dict[node])
else:
synset = wn.synset(vocab)
hypernyms = synset.hypernyms()
hyponyms = synset.hyponyms()
for hypernym in hypernyms:
if vocab_dict[hypernym.name()]:
neighbor_nodes.append(vocab_dict[hypernym.name()])
for hyponym in hyponyms:
if vocab_dict[hyponym.name()]:
neighbor_nodes.append(vocab_dict[hyponym.name()])
neighbors_dict[index] = neighbor_nodes
neighbor_nodes = []
return neighbors_dict
class Wordpairs(object):
"""
Reads the gzipped pairs file
Yields line by line
"""
def __init__(self, filepath):
self.filepath = filepath
def __iter__(self):
with gzip.open(self.filepath, "rb") as pairfile:
for line in pairfile:
if line.strip():
yield line.strip().decode('utf-8')
def vocab_from_file(vocabfile):
"""
Generates vocabulary from a vocabulary file in JSON
Outputs vocabulary and inverted vocabulary
"""
with smart_open(vocabfile, 'r') as f:
inv_vocab = json.loads(f.read())
vocabulary = {}
for no, word in enumerate(inv_vocab):
vocabulary[word] = no
print('Vocabulary size = %d' % len(vocabulary), file=sys.stderr)
return vocabulary, inv_vocab
def build_vocabulary(pairs):
"""
Generates vocabulary from the sentences
Counts the total number of training pairs
Outputs this number, vocabulary and inverted vocabulary
"""
vocabulary = {}
train_pairs = 0
for pair in pairs:
(word0, word1, similarity) = pair.split('\t')
train_pairs += 1
for word in [word0, word1]:
vocabulary[word] = 0
print('Vocabulary size = %d' % len(vocabulary), file=sys.stderr)
print('Total word pairs in the training set = %d' % train_pairs, file=sys.stderr)
inv_vocab = sorted(vocabulary.keys())
inv_vocab.insert(0, 'UNK')
for word in inv_vocab:
vocabulary[word] = inv_vocab.index(word)
return train_pairs, vocabulary, inv_vocab
def batch_generator(pairs, vocabulary, vocab_size, nsize, batch_size, use_neighbors,
neighbors_count):
"""
Generates training batches
"""
timing = False # Whether to print out batch generation time
while True:
# Iterate over all word pairs
# For each pair generate word index sequence
# Produce batches for training
# Each batch will emit the following things
# 1 - current word index
# 2 - context word index
# 3 - target similarity
# 4 - the same for negative samples
samples_per_pair = 2 + 2 * nsize # How many training instances we get from each pair
# How many samples will be there in each batch?
samples_per_batch = samples_per_pair * batch_size
inputs_list = [np.zeros((samples_per_batch, 1), dtype=int),
np.zeros((samples_per_batch, 1), dtype=int)]
if use_neighbors:
for n in range(neighbors_count * 2):
inputs_list.append(np.zeros((samples_per_batch, 1), dtype=int))
# Batch should be a tuple of inputs and targets. First we create it empty:
batch = (inputs_list, np.zeros((samples_per_batch, 1)))
inst_counter = 0
start = time.time()
for pair in pairs:
# split the line on tabs
sequence = pair.split('\t')
words = sequence[:2]
if words[0] not in vocabulary or words[1] not in vocabulary:
continue
sim = np.float64(sequence[2])
# Convert real words to indexes
sent_seq = [vocabulary[word] for word in words]
current_word_index = sent_seq[0]
context_word_index = sent_seq[1]
if use_neighbors and neighbors_count > 0:
w_neighbors = neighbors_dict[current_word_index]
c_neighbors = neighbors_dict[context_word_index]
w_nbrs = []
c_nbrs = []
for n in range(neighbors_count):
if w_neighbors and len(w_neighbors) > n:
w_nbrs.append(random.choice(w_neighbors))
else:
w_nbrs.append(current_word_index)
if c_neighbors and len(c_neighbors) > n:
c_nbrs.append(random.choice(c_neighbors))
else:
c_nbrs.append(context_word_index)
# get negative samples for the current pair
neg_samples = get_negative_samples(
current_word_index, context_word_index, vocab_size, nsize)
# Adding 2 positive examples and the corresponding negative samples to the current batch
for i in range(samples_per_pair):
batch[0][0][inst_counter] = neg_samples[0][i][0]
batch[0][1][inst_counter] = neg_samples[0][i][1]
if use_neighbors and neighbors_count > 0:
for n in range(neighbors_count):
batch[0][n + 2][inst_counter] = w_nbrs[n]
for n in range(neighbors_count):
batch[0][n + neighbors_count + 2][inst_counter] = c_nbrs[n]
pred_sim = neg_samples[1][i]
# if this is a positive example, replace 1 with the real similarity from the file:
if pred_sim != 0:
pred_sim = sim
batch[1][inst_counter] = pred_sim
inst_counter += 1
if inst_counter == samples_per_batch:
yield batch
end = time.time()
if timing:
print('Batch generation took', end - start, file=sys.stderr)
inst_counter = 0
inputs_list = [np.zeros((samples_per_batch, 1), dtype=int),
np.zeros((samples_per_batch, 1), dtype=int)]
if use_neighbors:
for n in range(neighbors_count * 2):
inputs_list.append(np.zeros((samples_per_batch, 1), dtype=int))
batch = (inputs_list, np.zeros((samples_per_batch, 1)))
start = time.time()
def batch_generator_2(pairs, vocabulary, vocab_size, nsize, batch_size):
"""
Generates training batches
"""
global current_pos_samples
timing = False # Whether to print out batch generation time
samples_per_pair = 2 + 2 * nsize # How many training instances we get from each pair
# How many samples will be there in each batch?
samples_per_batch = samples_per_pair * batch_size
inputs_list = [np.zeros((samples_per_batch, 1), dtype=int),
np.zeros((samples_per_batch, 1), dtype=int)]
# Batch should be a tuple of inputs and targets. First we create it empty:
batch = (inputs_list, np.zeros((samples_per_batch, 1)))
inst_counter = 0
start = time.time()
for pair in pairs:
# split the line on tabs
sequence = pair.split('\t')
words = sequence[:2]
if words[0] not in vocabulary or words[1] not in vocabulary:
continue
sim = np.float64(sequence[2])
# Convert real words to indexes
sent_seq = [vocabulary[word] for word in words]
current_word_index = sent_seq[0]
context_word_index = sent_seq[1]
current_pos_samples[0].append(current_word_index)
current_pos_samples[1].append(context_word_index)
# get negative samples for the current pair
neg_samples = get_negative_samples(
current_word_index, context_word_index, vocab_size, nsize)
# Adding two positive examples and the corresponding negative samples to the current batch
for i in range(samples_per_pair):
batch[0][0][inst_counter] = neg_samples[0][i][0]
batch[0][1][inst_counter] = neg_samples[0][i][1]
pred_sim = neg_samples[1][i]
# if this is a positive example, replace 1 with the real similarity from the file:
if pred_sim != 0:
pred_sim = sim
batch[1][inst_counter] = pred_sim
inst_counter += 1
if inst_counter == samples_per_batch:
yield batch
end = time.time()
if timing:
print('Batch generation took', end - start, file=sys.stderr)
inst_counter = 0
inputs_list = [np.zeros((samples_per_batch, 1), dtype=int),
np.zeros((samples_per_batch, 1), dtype=int)]
batch = (inputs_list, np.zeros((samples_per_batch, 1)))
current_pos_samples = [[], []]
start = time.time()
# return the remaining samples
yield batch
def get_node_neighbors(word_idx):
return neighbors_dict[word_idx]
def get_current_positive_samples():
return current_pos_samples
def get_negative_samples(current_word_index, context_word_index, vocab_size, nsize):
# Generate random negative samples, by default the same number as positive samples
neg_samples = skipgrams([current_word_index, context_word_index], vocab_size, window_size=1,
negative_samples=nsize)
return neg_samples
def save_word2vec_format(fname, vocab, vectors, binary=False):
"""Store the input-hidden weight matrix in the same format used by the original
C word2vec-tool, for compatibility.
Parameters
----------
fname : str
The file path used to save the vectors in
vocab : dict
The vocabulary of words with their ranks
vectors : numpy.array
The vectors to be stored
binary : bool
If True, the data wil be saved in binary word2vec format, else in plain text.
"""
if not (vocab or vectors):
raise RuntimeError('no input')
total_vec = len(vocab)
vector_size = vectors.shape[1]
print('storing %dx%d projection weights into %s' % (total_vec, vector_size, fname))
assert (len(vocab), vector_size) == vectors.shape
with utils.smart_open(fname, 'wb') as fout:
fout.write(utils.to_utf8('%s %s\n' % (total_vec, vector_size)))
position = 0
for element in sorted(vocab, key=lambda word: vocab[word]):
row = vectors[position]
if binary:
row = row.astype(real)
fout.write(utils.to_utf8(element) + b" " + row.tostring())
else:
fout.write(utils.to_utf8('%s %s\n' % (element, ' '.join(repr(val) for val in row))))
position += 1
class SimilarityCallback(Callback):
"""
Used to output word similarities (or neighbors) at the end of each epoch
"""
def __init__(self, validation_model=None):
super(SimilarityCallback, self).__init__()
self.validation_model = validation_model
def on_epoch_end(self, epoch, logs=None):
pairs = combinations(self.model.vexamples, 2)
for pair in pairs:
valid_word0 = pair[0]
valid_word1 = pair[1]
sim = self._get_sim_pair(self.model.ivocab.index(valid_word0),
self.model.ivocab.index(valid_word1),
self.validation_model)
log_str = 'Similarity between %s and %s: %f' % (valid_word0, valid_word1, sim)
print(log_str)
# The following code can be used to produce nearest neigbors for validation set:
# for i in range(valid_size):
# # valid_word = inverted_vocabulary[valid_examples[i]]
# valid_word = valid_examples[i]
# top_k = 3 # number of nearest neighbors
# sim = self._get_sim(inverted_vocabulary.index(valid_word))
# nearest = (-sim).argsort()[1:top_k + 1]
# log_str = 'Nearest to %s:' % valid_word
# for k in range(top_k):
# close_word = inverted_vocabulary[nearest[k]]
# log_str = '%s %s,' % (log_str, close_word)
# print(log_str)
return
@staticmethod
def _get_sim_pair(valid_word_idx, valid_word_idx2, validation_model):
"""
Produces similarity between a pair of words, using validation model
"""
in_arr1 = np.zeros((1,))
in_arr2 = np.zeros((1,))
in_arr1[0, ] = valid_word_idx
in_arr2[0, ] = valid_word_idx2
out = validation_model.predict_on_batch([in_arr1, in_arr2])
return out
@staticmethod
def _get_sim(valid_word_idx, validation_model, vocab_size):
"""
Produces similarities to all other words from the vocabulary
"""
sim = np.zeros((vocab_size,))
in_arr1 = np.zeros((1,))
in_arr2 = np.zeros((1,))
for i in range(vocab_size):
in_arr1[0, ] = valid_word_idx
in_arr2[0, ] = i
out = validation_model.predict_on_batch([in_arr1, in_arr2])
sim[i] = out
return sim