forked from stanfordnmbl/opencap-processing
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutilsProcessing.py
622 lines (564 loc) · 32.4 KB
/
utilsProcessing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
'''
---------------------------------------------------------------------------
OpenCap processing: utilsProcessing.py
---------------------------------------------------------------------------
Copyright 2022 Stanford University and the Authors
Author(s): Antoine Falisse, Scott Uhlrich
Licensed under the Apache License, Version 2.0 (the "License"); you may not
use this file except in compliance with the License. You may obtain a copy
of the License at http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
'''
import os
pathFile = os.path.dirname(os.path.realpath(__file__))
import sys
sys.path.append(os.path.join(pathFile, 'ActivityAnalyses'))
import logging
import opensim
import numpy as np
from scipy import signal
import matplotlib.pyplot as plt
from utils import storage_to_dataframe, download_trial, get_trial_id
def lowPassFilter(time, data, lowpass_cutoff_frequency, order=4):
fs = 1/np.round(np.mean(np.diff(time)),16)
wn = lowpass_cutoff_frequency/(fs/2)
sos = signal.butter(order/2, wn, btype='low', output='sos')
dataFilt = signal.sosfiltfilt(sos, data, axis=0)
return dataFilt
# %% Segment gait
def segment_gait(session_id, trial_name, data_folder, gait_cycles_from_end=0):
# Segmentation is done in the gait_analysis class
from gait_analysis import gait_analysis
gait = gait_analysis(os.path.join(data_folder,session_id), trial_name,
n_gait_cycles=-1)
heelstrikeTimes = gait.gaitEvents['ipsilateralTime'][gait_cycles_from_end,(0,2)].tolist()
return heelstrikeTimes, gait
# %% Segment squats.
def segment_squats(ikFilePath, pelvis_ty=None, timeVec=None, visualize=False,
filter_pelvis_ty=True, cutoff_frequency=4, height=.2):
# TODO: eventually, this belongs in a squat_analysis class and should take
# the form of segment_gait
# Extract pelvis_ty if not given.
if pelvis_ty is None and timeVec is None:
ikResults = storage_to_dataframe(ikFilePath,headers={'pelvis_ty'})
timeVec = ikResults['time']
if filter_pelvis_ty:
from utilsOpenSimAD import filterNumpyArray
pelvis_ty = filterNumpyArray(
ikResults['pelvis_ty'].to_numpy(), timeVec.to_numpy(),
cutoff_frequency=cutoff_frequency)
else:
pelvis_ty = ikResults['pelvis_ty']
dt = timeVec[1] - timeVec[0]
# Identify minimums.
pelvSignal = np.array(-pelvis_ty - np.min(-pelvis_ty))
pelvSignalPos = np.array(pelvis_ty - np.min(pelvis_ty))
idxMinPelvTy,_ = signal.find_peaks(pelvSignal,distance=.7/dt,height=height)
# Find the max adjacent to all of the minimums.
minIdxOld = 0
startFinishInds = []
for i, minIdx in enumerate(idxMinPelvTy):
if i<len(idxMinPelvTy)-1:
nextIdx = idxMinPelvTy[i+1]
else:
nextIdx = len(pelvSignalPos)
startIdx = np.argmax(pelvSignalPos[minIdxOld:minIdx]) + minIdxOld
endIdx = np.argmax(pelvSignalPos[minIdx:nextIdx]) + minIdx
startFinishInds.append([startIdx,endIdx])
minIdxOld = np.copy(minIdx)
startFinishTimes = [timeVec[i].tolist() for i in startFinishInds]
if visualize:
plt.figure()
plt.plot(-pelvSignal)
for c_v, val in enumerate(startFinishInds):
plt.plot(val, -pelvSignal[val], marker='o', markerfacecolor='k',
markeredgecolor='none', linestyle='none',
label='Squatting phase')
if c_v == 0:
plt.legend()
plt.xlabel('Frames')
plt.ylabel('Position [m]')
plt.title('Vertical pelvis position')
plt.draw()
return startFinishTimes
# %% Segment sit-to-stands.
'''
Three time intervals are returned:
- risingTimes: rising phase.
- risingTimesDelayedStart: rising phase from delayed start to exclude
time interval when there is contact with the chair.
- risingSittingTimesDelayedStartPeriodicEnd: rising and sitting phases
from delayed start to corresponding periodic end in terms of
vertical pelvis position.
'''
def segment_STS(ikFilePath, pelvis_ty=None, timeVec=None, velSeated=0.3,
velStanding=0.15, visualize=False, filter_pelvis_ty=True,
cutoff_frequency=4, delay=0.1):
# TODO: eventually, this belongs in a sts_analysis class and should take
# the form of segment_gait
# Extract pelvis_ty if not given.
if pelvis_ty is None and timeVec is None:
ikResults = storage_to_dataframe(ikFilePath,headers={'pelvis_ty'})
timeVec = ikResults['time']
if filter_pelvis_ty:
from utilsOpenSimAD import filterNumpyArray
pelvis_ty = filterNumpyArray(
ikResults['pelvis_ty'].to_numpy(), timeVec.to_numpy(),
cutoff_frequency=cutoff_frequency)
else:
pelvis_ty = ikResults['pelvis_ty']
dt = timeVec[1] - timeVec[0]
# Identify minimum.
pelvSignal = np.array(pelvis_ty - np.min(pelvis_ty))
pelvVel = np.diff(pelvSignal,append=0)/dt
idxMaxPelvTy,_ = signal.find_peaks(pelvSignal,distance=.9/dt,height=.2,
prominence=.2)
# Find the max adjacent to all of the minimums.
maxIdxOld = 0
startFinishInds = []
for i, maxIdx in enumerate(idxMaxPelvTy):
# Find velocity peak to left of pelv_ty peak.
vels = pelvVel[maxIdxOld:maxIdx]
velPeak,peakVals = signal.find_peaks(vels,distance=.9/dt,height=.2)
velPeak = velPeak[np.argmax(peakVals['peak_heights'])] + maxIdxOld
velsLeftOfPeak = np.flip(pelvVel[maxIdxOld:velPeak])
velsRightOfPeak = pelvVel[velPeak:]
# Trace left off the pelv_ty peak and find first index where
# velocity<velSeated m/s.
slowingIndLeft = np.argwhere(velsLeftOfPeak<velSeated)[0]
startIdx = velPeak - slowingIndLeft
slowingIndRight = np.argwhere(velsRightOfPeak<velStanding)[0]
endIdx = velPeak + slowingIndRight
startFinishInds.append([startIdx[0],endIdx[0]])
maxIdxOld = np.copy(maxIdx)
risingTimes = [timeVec[i].tolist() for i in startFinishInds]
# We add a delay to make sure we do not simulate part of the motion
# involving chair contact; this is not modeled.
sf = 1/np.round(np.mean(np.round(timeVec.to_numpy()[1:] -
timeVec.to_numpy()[:-1],2)),16)
startFinishIndsDelay = []
for i in startFinishInds:
c_i = []
for c_j, j in enumerate(i):
if c_j == 0:
c_i.append(j + int(delay*sf))
else:
c_i.append(j)
startFinishIndsDelay.append(c_i)
risingTimesDelayedStart = [
timeVec[i].tolist() for i in startFinishIndsDelay]
# Segment periodic STS by identifying when the pelvis_ty value from the
# standing phase best matches that from the sitting phase.
startFinishIndsDelayPeriodic = []
for val in startFinishIndsDelay:
pelvVal_up = pelvSignal[val[0]]
# Find next index when pelvis_ty is lower than this value.
val_down = (np.argwhere(pelvSignal[val[0]+1:] < pelvVal_up)[0][0])
# Add trimmed part.
val_down += (val[0]+1)
# Select val_down or val_down-1 based on best match with pelvVal_up.
if (np.abs(pelvSignal[val_down] - pelvVal_up) >
np.abs(pelvSignal[val_down-1] - pelvVal_up)):
val_down -= 1
startFinishIndsDelayPeriodic.append([val[0], val_down])
risingSittingTimesDelayedStartPeriodicEnd = [
timeVec[i].tolist() for i in startFinishIndsDelayPeriodic]
if visualize:
plt.figure()
plt.plot(pelvSignal)
for c_v, val in enumerate(startFinishInds):
plt.plot(val, pelvSignal[val], marker='o', markerfacecolor='k',
markeredgecolor='none', linestyle='none',
label='Rising phase')
val2 = startFinishIndsDelay[c_v][0]
plt.plot(val2, pelvSignal[val2], marker='o',
markerfacecolor='r', markeredgecolor='none',
linestyle='none', label='Delayed start')
val3 = startFinishIndsDelayPeriodic[c_v][1]
plt.plot(val3, pelvSignal[val3], marker='o',
markerfacecolor='g', markeredgecolor='none',
linestyle='none',
label='Periodic end corresponding to delayed start')
if c_v == 0:
plt.legend()
plt.xlabel('Frames')
plt.ylabel('Position [m]')
plt.title('Vertical pelvis position')
plt.tight_layout()
plt.draw()
return (risingTimes, risingTimesDelayedStart,
risingSittingTimesDelayedStartPeriodicEnd)
# %% Generate model with adjusted muscle wrapping to prevent unrealistic
# wrapping giving rise to bad muscle-tendon lengths and moment arms. Changes
# are made for the gmax1, iliacus, and psoas. Changes are documented in
# modelAdjustment.log.
def adjust_muscle_wrapping(
baseDir, dataDir, subject, poseDetector='DefaultPD',
cameraSetup='DefaultModel', OpenSimModel="LaiUhlrich2022",
overwrite=False):
# Paths
osDir = os.path.join(dataDir, subject, 'OpenSimData')
pathModelFolder = os.path.join(osDir, 'Model')
# We changed the OpenSim model name after some time:
# from LaiArnoldModified2017_poly_withArms_weldHand to LaiUhlrich2022.
# This is a hack for backward compatibility.
if OpenSimModel == 'LaiArnoldModified2017_poly_withArms_weldHand':
unscaledModelName = 'LaiUhlrich2022'
else:
unscaledModelName = OpenSimModel
pathUnscaledModel = os.path.join(baseDir, 'OpenSimPipeline', 'Models',
unscaledModelName + '.osim')
pathScaledModel = os.path.join(pathModelFolder,
OpenSimModel + '_scaled.osim')
pathOutputModel = os.path.join(pathModelFolder,
OpenSimModel + '_scaled_adjusted.osim')
if overwrite is False and os.path.exists(pathOutputModel):
return
else:
print('Adjust muscle wrapping surfaces.')
# Set up logging.
logPath = os.path.join(pathModelFolder,'modelAdjustment.log')
if os.path.exists(logPath):
os.remove(logPath)
# Remove all handlers associated with the root logger object.
for handler in logging.root.handlers[:]:
logging.root.removeHandler(handler)
logging.shutdown()
logging.basicConfig(filename=logPath,format='%(message)s',
level=logging.INFO)
# Load models.
opensim.Logger.setLevelString('error')
unscaledModel = opensim.Model(pathUnscaledModel)
scaledModel = opensim.Model(pathScaledModel)
scaledBodySet = scaledModel.getBodySet()
# Poses that often cause problems.
pose_gmax = [
[['hip_flexion_r',90],['hip_adduction_r',-26], ['hip_rotation_r',40]]]
coord_gmax = 'hip_flexion_r'
# generic model doesn't wrap beyond 32deg abd.
pose_hipFlexors = [
[['hip_flexion_r',-30],['hip_adduction_r',-32],['hip_rotation_r',-36]],
[['hip_flexion_r',-30],['hip_adduction_r',-50],['hip_rotation_r',0]],
[['hip_flexion_r',-30],['hip_adduction_r',30],['hip_rotation_r',0]]]
coord_hipFlexors = 'hip_flexion_r'
# Gmax1 - shrink wrap cyl radius.
momentArmsGmax_unscaled = getMomentArms(
unscaledModel,pose_gmax,'glmax1_r',coord_gmax)
momentArmsGmax_scaled = getMomentArms(
scaledModel,pose_gmax,'glmax1_r',coord_gmax)
# Get wrapping surface.
pelvis = scaledBodySet.get('pelvis')
gmaxWrap = opensim.WrapCylinder.safeDownCast(
pelvis.getWrapObjectSet().get('Gmax1_at_pelvis_r'))
radius = gmaxWrap.get_radius()
originalRadius = np.copy(radius)
for iPose,(momentArmGmax_scaled,momentArmGmax_unscaled) in enumerate(zip(momentArmsGmax_scaled,momentArmsGmax_unscaled)):
if np.abs(momentArmGmax_scaled) < np.max([0.5* np.abs(momentArmGmax_unscaled), 0.008]): # This constant came from 100 scaled models
originalBadMomentArm = np.copy(momentArmGmax_scaled)
while np.abs(momentArmGmax_scaled) <= np.abs(originalBadMomentArm) and radius > 0.002:
gmaxWrap.set_radius(radius-0.002)
momentArmGmax_scaled = getMomentArms(scaledModel,pose_gmax,'glmax1_r',coord_gmax)[iPose]
radius = gmaxWrap.get_radius()
if radius > 0.5*originalRadius:
outputStr = '-For pose #{}, scaled gmax1 moment arm was {:.3f}. Unscaled was {:.3f}. Reduced R&L wrap radius from {:.3f} to {:.3f}, which increased the moment arm back to {:.3f}.'.format(
iPose, originalBadMomentArm,momentArmGmax_unscaled,
originalRadius,radius,momentArmGmax_scaled)
print(outputStr)
logging.info(outputStr)
# Set the left side as well.
opensim.WrapCylinder.safeDownCast(pelvis.getWrapObjectSet().get('Gmax1_at_pelvis_l')).set_radius(radius)
else:
outputStr = '-For pose #{}, couldn''t restore glmax1 moment arm by shrinking radius by 1/2. Model unchanged.'.format(iPose)
print(outputStr)
logging.info(outputStr)
gmaxWrap.set_radius(float(originalRadius))
scaledModel.initSystem()
else:
outputStr = '-For pose #{}, scaled gmax1 moment arm was {:.3f}. Unscaled was {:.3f}. No adjustements made.'.format(
iPose,np.abs(momentArmGmax_scaled),np.abs(momentArmGmax_unscaled))
print(outputStr)
logging.info(outputStr)
# Iliacus - change path points to engage wrap cylinder.
momentArms_unscaled = getMomentArms(
unscaledModel,pose_hipFlexors,'iliacus_r',coord_hipFlexors)
momentArms_scaled = getMomentArms(
scaledModel,pose_hipFlexors,'iliacus_r',coord_hipFlexors)
# Get path point locations.
muscle = scaledModel.getMuscles().get('iliacus_r')
pathPoints = muscle.get_GeometryPath().getPathPointSet()
point1 = opensim.PathPoint.safeDownCast(pathPoints.get(1))
loc1Vec = point1.get_location()
point2 = opensim.PathPoint.safeDownCast(pathPoints.get(2))
loc2Vec = point2.get_location()
original_loc1 = [loc1Vec[i] for i in range(3)]
original_loc2 = [loc2Vec[i] for i in range(3)]
# Get wrap cyl.
wrapCyl = opensim.WrapCylinder.safeDownCast(
pelvis.getWrapObjectSet().get('IL_at_brim_r'))
radius = wrapCyl.get_radius()
originalRadius = np.copy(radius)
previousRadius = np.copy(radius)
for iPose,(momentArm_scaled,momentArm_unscaled) in enumerate(zip(momentArms_scaled,momentArms_unscaled)):
if np.abs(momentArm_scaled) < np.max([0.7* np.abs(momentArm_unscaled) , 0.015]):
# Get path point locations.
muscle = scaledModel.getMuscles().get('iliacus_r')
pathPoints = muscle.get_GeometryPath().getPathPointSet()
point1 = opensim.PathPoint.safeDownCast(pathPoints.get(1))
loc1Vec = point1.get_location()
point2 = opensim.PathPoint.safeDownCast(pathPoints.get(2))
loc2Vec = point2.get_location()
originalBadMomentArm = np.copy(momentArm_scaled)
while np.abs(momentArm_scaled) <= np.max([0.7* np.abs(momentArm_unscaled) , 0.015]) and (np.abs(loc1Vec[0]-original_loc1[0]) < 0.015 and np.abs(loc2Vec[1]-original_loc2[1]) <0.015):
loc1Vec[0] += 0.002 # Move the 1st (pelvis) path point forward
loc2Vec[1] -= 0.002 # move the 2nd (femur) path point down
point1.set_location(loc1Vec)
point2.set_location(loc2Vec)
momentArm_scaled = getMomentArms(scaledModel,pose_hipFlexors,'iliacus_r',coord_hipFlexors)[iPose]
while np.abs(momentArm_scaled) <= np.max([0.7* np.abs(momentArm_unscaled) , 0.015]) and radius>0.7*originalRadius: # above approach did not succeed, drop the cyl radius some
wrapCyl.set_radius(radius-0.002)
momentArm_scaled = getMomentArms(scaledModel,pose_hipFlexors,'iliacus_r',coord_hipFlexors)[iPose]
pelvis = scaledBodySet.get('pelvis')
radius = wrapCyl.get_radius()
if np.abs(momentArm_scaled) > np.max([0.7* np.abs(momentArm_unscaled) , 0.015]): # succeeded
# Set the left side as well.
muscle = scaledModel.getMuscles().get('iliacus_l')
pathPoints = muscle.get_GeometryPath().getPathPointSet()
point1 = opensim.PathPoint.safeDownCast(pathPoints.get(1))
loc1Vec_l = point1.get_location()
loc1Vec_l[0] = loc1Vec[0]
point1.set_location(loc1Vec_l)
point2 = opensim.PathPoint.safeDownCast(pathPoints.get(2))
loc2Vec_l = point2.get_location()
loc2Vec_l[1] = loc2Vec[1]
point2.set_location(loc2Vec_l)
if radius<previousRadius:
radiusStr = ', and after moving points by 1.5±0.2cm wasn''t enough, reduced R&L iliacus wrap radius from {:.3f} to {:.3f}'.format(
originalRadius,radius)
# set the left side as well.
opensim.WrapCylinder.safeDownCast(pelvis.getWrapObjectSet().get('IL_at_brim_l')).set_radius(radius)
else:
radiusStr = ''
previousRadius = np.copy(radius)
outputStr = '-For pose #{}, moved iliacus pelvis path point xpos forward from {:.3f} to {:.3f}, and femur iliacus path point ypos down from {:.3f} to {:.3f}'.format(
iPose,original_loc1[0],loc1Vec[0],original_loc2[1],loc2Vec[1]) + radiusStr + '. Restored moment arm from {:.3f} to {:.3f}.'.format(
originalBadMomentArm,momentArm_scaled)
print(outputStr)
logging.info(outputStr)
else:
outputStr = '-For pose #{}, couldn''t restore iliacus moment arm by moving path points by 2cm. Model unchanged.'.format(iPose)
print(outputStr)
logging.info(outputStr)
point1.set_location(original_loc1)
point2.set_location(original_loc2)
scaledModel.initSystem()
else:
outputStr = '-For pose #{}, scaled iliacus moment arm was {:.3f}. Unscaled was {:.3f}. No adjustements made.'.format(
iPose,np.abs(momentArm_scaled),np.abs(momentArm_unscaled))
print(outputStr)
logging.info(outputStr)
# Psoas - change path points to engage wrap cylinder.
momentArms_unscaled = getMomentArms(
unscaledModel,pose_hipFlexors,'psoas_r',coord_hipFlexors)
momentArms_scaled = getMomentArms(
scaledModel,pose_hipFlexors,'psoas_r',coord_hipFlexors)
# Get path point locations
muscle = scaledModel.getMuscles().get('psoas_r')
pathPoints = muscle.get_GeometryPath().getPathPointSet()
point1 = opensim.PathPoint.safeDownCast(pathPoints.get(1))
loc1Vec = point1.get_location()
point2 = opensim.PathPoint.safeDownCast(pathPoints.get(2))
loc2Vec = point2.get_location()
original_loc1 = [loc1Vec[i] for i in range(3)]
original_loc2 = [loc2Vec[i] for i in range(3)]
# Get wrap cyl
wrapCyl = opensim.WrapCylinder.safeDownCast(
pelvis.getWrapObjectSet().get('PS_at_brim_r'))
radius = wrapCyl.get_radius()
originalRadius = np.copy(radius)
previousRadius = np.copy(radius)
for iPose,(momentArm_scaled,momentArm_unscaled) in enumerate(zip(momentArms_scaled,momentArms_unscaled)):
if np.abs(momentArm_scaled) < np.max([0.7* np.abs(momentArm_unscaled), 0.015]):
# Get path point locations.
muscle = scaledModel.getMuscles().get('psoas_r')
pathPoints = muscle.get_GeometryPath().getPathPointSet()
point1 = opensim.PathPoint.safeDownCast(pathPoints.get(1))
loc1Vec = point1.get_location()
point2 = opensim.PathPoint.safeDownCast(pathPoints.get(2))
loc2Vec = point2.get_location()
originalBadMomentArm = np.copy(momentArm_scaled)
while np.abs(momentArm_scaled) <= np.max([0.7* np.abs(momentArm_unscaled), 0.015]) and (np.abs(loc1Vec[0]-original_loc1[0]) < 0.015 and np.abs(loc2Vec[1]-original_loc2[1]) < 0.015):
loc1Vec[0] += 0.002 # Move the 1st (pelvis) path point forward
loc2Vec[1] -= 0.002 # move the 2nd (femur) path point down
point1.set_location(loc1Vec)
point2.set_location(loc2Vec)
momentArm_scaled = getMomentArms(scaledModel,pose_hipFlexors,'psoas_r',coord_hipFlexors)[iPose]
while np.abs(momentArm_scaled) <= np.max([0.7* np.abs(momentArm_unscaled) , 0.015]) and radius>0.7*originalRadius: #above approach did not succeed, drop the cyl radius some
wrapCyl.set_radius(radius-0.002)
momentArm_scaled = getMomentArms(scaledModel,pose_hipFlexors,'psoas_r',coord_hipFlexors)[iPose]
pelvis = scaledBodySet.get('pelvis')
radius = wrapCyl.get_radius()
if np.abs(momentArm_scaled) > np.max([0.7* np.abs(momentArm_unscaled) , 0.015]): # succeeded
# set the left side as well.
muscle = scaledModel.getMuscles().get('psoas_l')
pathPoints = muscle.get_GeometryPath().getPathPointSet()
point1 = opensim.PathPoint.safeDownCast(pathPoints.get(1))
loc1Vec_l = point1.get_location()
loc1Vec_l[0] = loc1Vec[0]
point1.set_location(loc1Vec_l)
point2 = opensim.PathPoint.safeDownCast(pathPoints.get(2))
loc2Vec_l = point2.get_location()
loc2Vec_l[1] = loc2Vec[1]
point2.set_location(loc2Vec_l)
if radius<previousRadius:
radiusStr = ', and after moving points by 1.5±0.2cm wasn''t enough, reduced R&L psoas wrap radius from {:.3f} to {:.3f}'.format(
originalRadius,radius)
# set the left side as well.
opensim.WrapCylinder.safeDownCast(pelvis.getWrapObjectSet().get('PS_at_brim_l')).set_radius(radius)
else:
radiusStr = ''
previousRadius = np.copy(radius)
outputStr = '-For pose #{}, moved psoas pelvis path point xpos forward from {:.3f} to {:.3f}, and femur psoas path point ypos down from {:.3f} to {:.3f}'.format(
iPose,original_loc1[0],loc1Vec[0],original_loc2[1],loc2Vec[1]) + radiusStr + '. Restored moment arm from {:.3f} to {:.3f}.'.format(
originalBadMomentArm,momentArm_scaled)
print(outputStr)
logging.info(outputStr)
else:
outputStr = '-For pose #{}, couldn''t restore psoas moment arm by moving path points by 2cm. Model unchanged.'.format(iPose)
print(outputStr)
logging.info(outputStr)
point1.set_location(opensim.Vec3(original_loc1))
point2.set_location(opensim.Vec3(original_loc2))
scaledModel.initSystem()
else:
outputStr = '-For pose #{}, scaled psoas moment arm was {:.3f}. Unscaled was {:.3f}. No adjustements made.'.format(
iPose,np.abs(momentArm_scaled),np.abs(momentArm_unscaled))
print(outputStr)
logging.info(outputStr)
scaledModel.printToXML(pathOutputModel)
logging.shutdown()
# %% Pose the models and get moment arms.
def getMomentArms(model, poses, muscleName, coordinateForMomentArm):
state = model.initSystem()
coords = model.getCoordinateSet()
muscleSet = model.getMuscles()
coordForMA = coords.get(coordinateForMomentArm)
momentArms = []
for i, pose in enumerate(poses):
for coordVal in pose:
coords.get(coordVal[0]).setValue(state,np.deg2rad(coordVal[1]))
momentArms.append(
muscleSet.get(muscleName).computeMomentArm(state,coordForMA))
return momentArms
# %% Generate model with contacts.
def generate_model_with_contacts(
dataDir, subject, poseDetector='DefaultPD', cameraSetup='DefaultModel',
OpenSimModel="LaiUhlrich2022", setPatellaMasstoZero=True,
overwrite=False):
# %% Process settings.
osDir = os.path.join(dataDir, subject, 'OpenSimData')
# pathModelFolder = os.path.join(osDir, poseDetector, cameraSetup, 'Model')
pathModelFolder = os.path.join(osDir, 'Model')
suffix_MA = '_adjusted'
outputModelFileName = (OpenSimModel + "_scaled" + suffix_MA)
pathOutputFiles = os.path.join(pathModelFolder, outputModelFileName)
pathOutputModel = pathOutputFiles + "_contacts.osim"
if overwrite is False and os.path.exists(pathOutputModel):
return
else:
print('Add foot-ground contacts.')
# %% Add contact spheres to the scaled model.
# The parameters of the foot-ground contacts are based on previous work. We
# scale the contact sphere locations based on foot dimensions.
reference_contact_spheres = {
"s1_r": {"radius": 0.032, "location": np.array([0.0019011578840796601, -0.01, -0.00382630379623308]), "orientation": np.array([0, 0, 0]), "socket_frame": "calcn_r"},
"s2_r": {"radius": 0.032, "location": np.array([0.14838639994206301, -0.01, -0.028713422052654002]), "orientation": np.array([0, 0, 0]), "socket_frame": "calcn_r"},
"s3_r": {"radius": 0.032, "location": np.array([0.13300117060705099, -0.01, 0.051636247344956601]), "orientation": np.array([0, 0, 0]), "socket_frame": "calcn_r"},
"s4_r": {"radius": 0.032, "location": np.array([0.066234666199163503, -0.01, 0.026364160674169801]), "orientation": np.array([0, 0, 0]), "socket_frame": "calcn_r"},
"s5_r": {"radius": 0.032, "location": np.array([0.059999999999999998, -0.01, -0.018760308461917698]), "orientation": np.array([0, 0, 0]), "socket_frame": "toes_r" },
"s6_r": {"radius": 0.032, "location": np.array([0.044999999999999998, -0.01, 0.061856956754965199]), "orientation": np.array([0, 0, 0]), "socket_frame": "toes_r" },
"s1_l": {"radius": 0.032, "location": np.array([0.0019011578840796601, -0.01, 0.00382630379623308]), "orientation": np.array([0, 0, 0]), "socket_frame": "calcn_l"},
"s2_l": {"radius": 0.032, "location": np.array([0.14838639994206301, -0.01, 0.028713422052654002]), "orientation": np.array([0, 0, 0]), "socket_frame": "calcn_l"},
"s3_l": {"radius": 0.032, "location": np.array([0.13300117060705099, -0.01, -0.051636247344956601]), "orientation": np.array([0, 0, 0]), "socket_frame": "calcn_l"},
"s4_l": {"radius": 0.032, "location": np.array([0.066234666199163503, -0.01, -0.026364160674169801]), "orientation": np.array([0, 0, 0]), "socket_frame": "calcn_l"},
"s5_l": {"radius": 0.032, "location": np.array([0.059999999999999998, -0.01, 0.018760308461917698]), "orientation": np.array([0, 0, 0]), "socket_frame": "toes_l" },
"s6_l": {"radius": 0.032, "location": np.array([0.044999999999999998, -0.01, -0.061856956754965199]), "orientation": np.array([0, 0, 0]), "socket_frame": "toes_l" }}
reference_scale_factors = {"calcn_r": np.array([0.91392399999999996, 0.91392399999999996, 0.91392399999999996]),
"toes_r": np.array([0.91392399999999996, 0.91392399999999996, 0.91392399999999996]),
"calcn_l": np.array([0.91392399999999996, 0.91392399999999996, 0.91392399999999996]),
"toes_l": np.array([0.91392399999999996, 0.91392399999999996, 0.91392399999999996])}
reference_contact_half_space = {"name": "floor", "location": np.array([0, 0, 0]),"orientation": np.array([0, 0, -np.pi/2]), "frame": "ground"}
stiffness = 1000000
dissipation = 2.0
static_friction = 0.8
dynamic_friction = 0.8
viscous_friction = 0.5
transition_velocity = 0.2
# Add contact spheres and SmoothSphereHalfSpaceForces.
opensim.Logger.setLevelString('error')
model = opensim.Model(pathOutputFiles + ".osim")
bodySet = model.get_BodySet()
# ContactHalfSpace.
if reference_contact_half_space["frame"] == "ground":
contact_half_space_frame = model.get_ground()
else:
raise ValueError('Not yet supported.')
contactHalfSpace = opensim.ContactHalfSpace(
opensim.Vec3(reference_contact_half_space["location"]),
opensim.Vec3(reference_contact_half_space["orientation"]),
contact_half_space_frame, reference_contact_half_space["name"])
contactHalfSpace.connectSocket_frame(contact_half_space_frame)
model.addContactGeometry(contactHalfSpace)
# ContactSpheres and SmoothSphereHalfSpaceForces.
for ref_contact_sphere in reference_contact_spheres:
# ContactSpheres.
body = bodySet.get(reference_contact_spheres[ref_contact_sphere]["socket_frame"])
# Scale location based on attached_geometry scale_factors.
# We don't scale the y_position.
attached_geometry = body.get_attached_geometry(0)
c_scale_factors = attached_geometry.get_scale_factors().to_numpy()
c_ref_scale_factors = reference_scale_factors[reference_contact_spheres[ref_contact_sphere]["socket_frame"]]
scale_factors = c_ref_scale_factors / c_scale_factors
scale_factors[1] = 1
scaled_location = reference_contact_spheres[ref_contact_sphere]["location"] / scale_factors
c_contactSphere = opensim.ContactSphere(
reference_contact_spheres[ref_contact_sphere]["radius"],
opensim.Vec3(scaled_location), body, ref_contact_sphere)
c_contactSphere.connectSocket_frame(body)
model.addContactGeometry(c_contactSphere)
# SmoothSphereHalfSpaceForces.
SmoothSphereHalfSpaceForce = opensim.SmoothSphereHalfSpaceForce(
"SmoothSphereHalfSpaceForce_" + ref_contact_sphere,
c_contactSphere, contactHalfSpace)
SmoothSphereHalfSpaceForce.set_stiffness(stiffness)
SmoothSphereHalfSpaceForce.set_dissipation(dissipation)
SmoothSphereHalfSpaceForce.set_static_friction(static_friction)
SmoothSphereHalfSpaceForce.set_dynamic_friction(dynamic_friction)
SmoothSphereHalfSpaceForce.set_viscous_friction(viscous_friction)
SmoothSphereHalfSpaceForce.set_transition_velocity(transition_velocity)
SmoothSphereHalfSpaceForce.connectSocket_half_space(contactHalfSpace)
SmoothSphereHalfSpaceForce.connectSocket_sphere(c_contactSphere)
model.addForce(SmoothSphereHalfSpaceForce)
# We do not use the patella in the dynamic simulations. The reason is that
# the patella only matters for the muscle-tendon lengths and moment arms,
# but since we approximate those with polynomials, the patella is useless.
# We therefore remove it, since otherwise we would have to deal with
# kinematic constraints that would make things unecessarily complicated.
# We remove it when building the external function, and here we set its
# mass to zero such that we can make an apple-to-apple comparison when
# checking that the outputs from the external function match the results
# from ID ran with the model (with a mass set to 0, the patella will not
# influence ID).
if setPatellaMasstoZero:
for i in range(bodySet.getSize()):
c_body = bodySet.get(i)
c_body_name = c_body.getName()
if (c_body_name == 'patella_l' or c_body_name == 'patella_r'):
c_body.set_mass(0.)
c_body.set_inertia(opensim.Vec6(0))
model.finalizeConnections
model.initSystem()
model.printToXML(pathOutputModel)