-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathLv2_ps.py
472 lines (403 loc) · 23.5 KB
/
Lv2_ps.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
Created on Friday Jan 11 10:17am 2019
Plotting power spectra/power spectral densities
"""
from __future__ import division, print_function
from astropy.io import fits
import numpy as np
import pathlib
import Lv0_dirs,Lv0_fits2dict,Lv1_data_bin,Lv2_mkdir,Lv2_ps_method,Lv3_detection_level
from scipy import stats, signal
import matplotlib.pyplot as plt
import os
Lv0_dirs.global_par() #obtaining the global parameters
def whole(eventfile,par_list,tbin_size,mode,ps_type,oversampling,xlims,vlines):
"""
Plot the entire power spectrum without any cuts to the data.
eventfile - path to the event file. Will extract ObsID from this for the NICER files.
par_list - A list of parameters we'd like to extract from the FITS file
(e.g., from eventcl, PI_FAST, TIME, PI,)
tbin_size - the size of the time bins (in seconds!)
>> e.g., tbin_size = 2 means bin by 2s
>> e.g., tbin_size = 0.05 means bin by 0.05s!
mode - whether we want to show or save the plot.
ps_type - obtain power spectrum through the periodogram method ('period') or
the manual FFT way ('manual') or both ('both')
oversampling - whether to perform oversampling. Array will consist of
[True/False, oversampling factor]
xlims - a list or array: first entry = True/False as to whether to impose an
xlim; second and third entry correspond to the desired x-limits of the plot
vlines - a list or array: first entry = True/False as to whether to draw
a vertical line in the plot; second entry is the equation for the vertical line
"""
if type(eventfile) != str:
raise TypeError("eventfile should be a string!")
if 'TIME' not in par_list:
raise ValueError("You should have 'TIME' in the parameter list!")
if type(par_list) != list and type(par_list) != np.ndarray:
raise TypeError("par_list should either be a list or an array!")
if mode != 'show' and mode != 'save':
raise ValueError("Mode should either be 'show' or 'save'!")
if ps_type != 'period' and ps_type != 'manual' and ps_type != 'both':
raise ValueError("ps_type should either be 'period' or 'show' or 'save'!")
if type(oversampling) != list and type(oversampling) != np.ndarray:
raise TypeError("oversampling should either be a list or an array!")
if type(xlims) != list and type(xlims) != np.ndarray:
raise TypeError("xlims should either be a list or an array!")
if type(vlines) != list and type(vlines) != np.ndarray:
raise TypeError("vlines should either be a list or an array!")
parent_folder = str(pathlib.Path(eventfile).parent)
data_dict = Lv0_fits2dict.fits2dict(eventfile,1,par_list)
times = data_dict['TIME']
counts = np.ones(len(times))
shifted_t = times-times[0]
t_bins = np.linspace(0,np.ceil(shifted_t[-1]),int(np.ceil(shifted_t[-1])*1/tbin_size+1))
summed_data, bin_edges, binnumber = stats.binned_statistic(shifted_t,counts,statistic='sum',bins=t_bins) #binning the time values in the data
event_header = fits.open(eventfile)[1].header
obj_name = event_header['OBJECT']
obsid = event_header['OBS_ID']
if ps_type == 'period':
plt.figure()
pdgm_f,pdgm_ps = Lv2_ps_method.pdgm(t_bins,summed_data,xlims,vlines,True,oversampling)
plt.title('Power spectrum for ' + obj_name + ', ObsID: ' + str(obsid) + '\n Periodogram method' + '\n Includes whole time interval and energy range',fontsize=12)
if mode == 'show':
plt.show()
elif mode == 'save':
filename = 'ps_' + obsid + '_bin' + str(tbin_size) + 's_pdgm.pdf'
plt.savefig(parent_folder+'/'+filename,dpi=900)
plt.close()
return pdgm_f, pdgm_ps
if ps_type == 'manual':
plt.figure()
manual_f,manual_ps = Lv2_ps_method.manual(t_bins,summed_data,xlims,vlines,True,oversampling)
plt.title('Power spectrum for ' + obj_name + ', ObsID ' + str(obsid) + '\n Manual FFT method' + '\n Includes whole time interval and energy range',fontsize=12)
if mode == 'show':
plt.show()
elif mode == 'save':
filename = 'ps_' + obsid + '_bin' + str(tbin_size) + 's_manual.pdf'
plt.savefig(parent_folder+'/'+filename,dpi=900)
plt.close()
return manual_f, manual_ps
if ps_type == 'both':
pdgm_f,pdgm_ps = Lv2_ps_method.pdgm(t_bins,summed_data,xlims,vlines,False,oversampling)
manual_f,manual_ps = Lv2_ps_method.manual(t_bins,summed_data,xlims,vlines,False,oversampling)
fig, (ax1,ax2) = plt.subplots(2,1)
fig.suptitle('Power spectra for ' + obj_name + ', ObsID ' + str(obsid) + '\n both periodogram and manual FFT method' + '\n Includes whole time interval and energy range' , fontsize=12)
ax1.semilogy(pdgm_f,pdgm_ps,'b-')#/np.mean(pdgm_ps),'b-') #periodogram; arrays already truncated!
ax1.set_xlabel('Hz',fontsize=12)
ax1.set_ylabel('Normalized power spectrum',fontsize=10)
ax2.semilogy(manual_f,manual_ps,'r-')#/np.mean(manual_ps),'r-') #manual FFT; arrays already truncated!
ax2.set_xlabel('Hz',fontsize=12)
ax2.set_ylabel('Normalized power spectrum',fontsize=10)
if xlims[0] == True:
ax1.set_xlim([xlims[1],xlims[2]])
ax2.set_xlim([xlims[1],xlims[2]])
if vlines[0] == True:
ax1.axvline(x=vlines[1],color='k',alpha=0.5,lw=0.5)
ax2.axvline(x=vlines[1],color='k',alpha=0.5,lw=0.5)
ax2.axhline(y=2,color='k',alpha=0.3,lw=0.3)
plt.subplots_adjust(hspace=0.2)
if mode == 'show':
plt.show()
elif mode == 'save':
filename = 'ps_' + obsid + '_bin' + str(tbin_size) + 's_both.pdf'
plt.savefig(parent_folder+'/'+filename,dpi=900)
plt.close()
return pdgm_f, pdgm_ps, manual_f, manual_ps
def partial_t(eventfile,par_list,tbin_size,t1,t2,mode,ps_type,oversampling,xlims,vlines):
"""
Plot the power spectrum for a desired time interval.
eventfile - path to the event file. Will extract ObsID from this for the NICER files.
par_list - A list of parameters we'd like to extract from the FITS file
(e.g., from eventcl, PI_FAST, TIME, PI,)
tbin_size - the size of the time bins (in seconds!)
>> e.g., tbin_size = 2 means bin by 2s
>> e.g., tbin_size = 0.05 means bin by 0.05s!
t1 - lower time boundary
t2 - upper time boundary
mode - whether we want to show or save the plot.
ps_type - obtain power spectrum through the periodogram method ('period') or
the manual FFT way ('manual') or both ('both')
oversampling - whether to perform oversampling. Array will consist of
[True/False, oversampling factor]
xlims - a list or array: first entry = True/False as to whether to impose an
xlim; second and third entry correspond to the desired x-limits of the plot
vlines - a list or array: first entry = True/False as to whether to draw
a vertical line in the plot; second entry is the equation for the vertical line
"""
if type(eventfile) != str:
raise TypeError("eventfile should be a string!")
if 'TIME' not in par_list:
raise ValueError("You should have 'TIME' in the parameter list!")
if type(par_list) != list and type(par_list) != np.ndarray:
raise TypeError("par_list should either be a list or an array!")
if t2<t1:
raise ValueError("t2 should be greater than t1!")
if mode != 'show' and mode != 'save':
raise ValueError("Mode should either be 'show' or 'save'!")
if ps_type != 'period' and ps_type != 'manual' and ps_type != 'both':
raise ValueError("ps_type should either be 'period' or 'show' or 'save'!")
if type(oversampling) != list and type(oversampling) != np.ndarray:
raise TypeError("oversampling should either be a list or an array!")
if type(xlims) != list and type(xlims) != np.ndarray:
raise TypeError("xlims should either be a list or an array!")
if type(vlines) != list and type(vlines) != np.ndarray:
raise TypeError("vlines should either be a list or an array!")
parent_folder = str(pathlib.Path(eventfile).parent)
truncated_t, truncated_counts = Lv1_data_bin.binning_t(eventfile,par_list,tbin_size,t1,t2)
event_header = fits.open(eventfile)[1].header
obj_name = event_header['OBJECT']
obsid = event_header['OBS_ID']
if ps_type == 'period':
plt.figure()
pdgm_f,pdgm_ps = Lv2_ps_method.pdgm(truncated_t[:-1],truncated_counts,xlims,vlines,True,oversampling)
plt.title('Power spectrum for ' + obj_name + ', ObsID ' + str(obsid) + '\n Periodogram method'+ '\n Time interval: '+str(t1)+'s-'+str(t2)+'s' + '\n Whole energy range',fontsize=12)
if mode == 'show':
plt.show()
elif mode == 'save':
filename = 'ps_' + obsid + '_bin' + str(tbin_size) + 's_pdgm_'+str(t1)+'s-'+str(t2)+'s.pdf'
plt.savefig(parent_folder+'/'+filename,dpi=900)
plt.close()
return pdgm_f, pdgm_ps
if ps_type == 'manual':
plt.figure()
manual_f,manual_ps = Lv2_ps_method.manual(truncated_t[:-1],truncated_counts,xlims,vlines,True,oversampling)
plt.title('Power spectrum for ' + obj_name + ', ObsID ' + str(obsid) + '\n Manual FFT method'+ '\n Time interval: '+str(t1)+'s-'+str(t2)+'s' + '\n Whole energy range',fontsize=12)
if mode == 'show':
plt.show()
elif mode == 'save':
filename = 'ps_' + obsid + '_bin' + str(tbin_size) + 's_manual_'+str(t1)+'s-'+str(t2)+'s.pdf'
plt.savefig(parent_folder+'/'+filename,dpi=900)
plt.close()
return manual_f, manual_ps
if ps_type == 'both':
pdgm_f,pdgm_ps = Lv2_ps_method.pdgm(truncated_t[:-1],truncated_counts,xlims,vlines,False,oversampling)
manual_f,manual_ps = Lv2_ps_method.manual(truncated_t[:-1],truncated_counts,xlims,vlines,False,oversampling)
fig, (ax1,ax2) = plt.subplots(2,1)
fig.suptitle('Power spectra for ' + obj_name + ', ObsID ' + str(obsid) + '\n both periodogram and manual FFT method'+ '\n Time interval: '+str(t1)+'s-'+str(t2)+'s' + '\n Whole energy range',fontsize=12)
ax1.semilogy(pdgm_f,pdgm_ps,'b-')#/np.mean(pdgm_ps),'b-') #periodogram; arrays already truncated!
ax1.set_xlabel('Hz',fontsize=12)
ax1.set_ylabel('Normalized power spectrum',fontsize=10)
ax2.semilogy(manual_f,manual_ps,'r-')#,'r-')#/np.mean(manual_ps),'r-') #manual FFT; arrays already truncated!
ax2.set_xlabel('Hz',fontsize=12)
ax2.set_ylabel('Normalized power spectrum',fontsize=10)
if xlims[0] == True:
ax1.set_xlim([xlims[1],xlims[2]])
ax2.set_xlim([xlims[1],xlims[2]])
if vlines[0] == True:
ax1.axvline(x=vlines[1],color='k',alpha=0.5,lw=0.5)
ax2.axvline(x=vlines[1],color='k',alpha=0.5,lw=0.5)
ax2.axhline(y=2,color='k',alpha=0.3,lw=0.3)
plt.subplots_adjust(hspace=0.2)
if mode == 'show':
plt.show()
elif mode == 'save':
filename = 'ps_' + obsid + '_bin' + str(tbin_size) + 's_both_'+str(t1)+'s-'+str(t2)+'s.pdf'
plt.savefig(parent_folder+'/'+filename,dpi=900)
plt.close()
return pdgm_f, pdgm_ps, manual_f, manual_ps
def partial_E(eventfile,par_list,tbin_size,Ebin_size,E1,E2,mode,ps_type,oversampling,xlims,vlines):
"""
Plot the time series for a desired energy range.
[Though I don't think this will be used much. Count/s vs energy is pointless,
since we're not folding in response matrix information here to get the flux.
So we're just doing a count/s vs time with an energy cut to the data.]
eventfile - path to the event file. Will extract ObsID from this for the NICER files.
par_list - A list of parameters we'd like to extract from the FITS file
(e.g., from eventcl, PI_FAST, TIME, PI,)
tbin_size - the size of the time bins (in seconds!)
>> e.g., tbin_size = 2 means bin by 2s
>> e.g., tbin_size = 0.05 means by in 0.05s
Ebin_size - the size of the energy bins (in keV!)
>> e.g., Ebin_size = 0.1 means bin by 0.1keV
>> e.g., Ebin_size = 0.01 means bin by 0.01keV!
E1 - lower energy boundary
E2 - upper energy boundary
mode - whether we want to show or save the plot.
ps_type - obtain power spectrum through the periodogram method ('period') or
the manual FFT way ('manual') or both ('both')
oversampling - whether to perform oversampling. Array will consist of
[True/False, oversampling factor]
xlims - a list or array: first entry = True/False as to whether to impose an
xlim; second and third entry correspond to the desired x-limits of the plot
vlines - a list or array: first entry = True/False as to whether to draw
a vertical line in the plot; second entry is the equation for the vertical line
"""
if type(eventfile) != str:
raise TypeError("eventfile should be a string!")
if 'TIME' not in par_list:
raise ValueError("You should have 'TIME' in the parameter list!")
if type(par_list) != list and type(par_list) != np.ndarray:
raise TypeError("par_list should either be a list or an array!")
if E2<E1:
raise ValueError("E2 should be greater than E1!")
if mode != 'show' and mode != 'save':
raise ValueError("Mode should either be 'show' or 'save'!")
if ps_type != 'period' and ps_type != 'manual' and ps_type != 'both':
raise ValueError("ps_type should either be 'period' or 'show' or 'save'!")
if type(oversampling) != list and type(oversampling) != np.ndarray:
raise TypeError("oversampling should either be a list or an array!")
if type(xlims) != list and type(xlims) != np.ndarray:
raise TypeError("xlims should either be a list or an array!")
if type(vlines) != list and type(vlines) != np.ndarray:
raise TypeError("vlines should either be a list or an array!")
parent_folder = str(pathlib.Path(eventfile).parent)
truncated_t, truncated_t_counts, truncated_E, truncated_E_counts = Lv1_data_bin.binning_E(eventfile,par_list,tbin_size,Ebin_size,E1,E2)
event_header = fits.open(eventfile)[1].header
obj_name = event_header['OBJECT']
obsid = event_header['OBS_ID']
if ps_type == 'period':
plt.figure()
pdgm_f,pdgm_ps = Lv2_ps_method.pdgm(truncated_t[:-1],truncated_t_counts,xlims,vlines,True,oversampling)
plt.title('Power spectrum for ' + obj_name + ', ObsID ' + str(obsid) + '\n Periodogram method'+ '\n Whole time interval'+'\n Energy range: '+str(E1)+'keV-'+str(E2)+'keV',fontsize=12)
if mode == 'show':
plt.show()
elif mode == 'save':
filename = 'ps_' + obsid + '_bin' + str(tbin_size) + 's_pdgm_'+str(E1)+'keV-'+str(E2)+'keV.pdf'
plt.savefig(parent_folder+'/'+filename,dpi=900)
plt.close()
return pdgm_f, pdgm_ps
if ps_type == 'manual':
plt.figure()
manual_f,manual_ps = Lv2_ps_method.manual(truncated_t[:-1],truncated_t_counts,xlims,vlines,True,oversampling)
plt.title('Power spectrum for ' + obj_name + ', ObsID ' + str(obsid) + '\n Manual FFT method'+ '\n Whole time interval'+'\n Energy range: '+str(E1)+'keV-'+str(E2)+'keV',fontsize=12)
if mode == 'show':
plt.show()
elif mode == 'save':
filename = 'ps_' + obsid + '_bin' + str(tbin_size) + 's_manual_'+str(E1)+'keV-'+str(E2)+'keV.pdf'
plt.savefig(parent_folder+'/'+filename,dpi=900)
plt.close()
return manual_f, manual_ps
if ps_type == 'both':
pdgm_f,pdgm_ps = Lv2_ps_method.pdgm(truncated_t[:-1],truncated_t_counts,xlims,vlines,False,oversampling)
manual_f,manual_ps = Lv2_ps_method.manual(truncated_t[:-1],truncated_t_counts,xlims,vlines,False,oversampling)
fig, (ax1,ax2) = plt.subplots(2,1)
fig.suptitle('Power spectra for ' + obj_name + ', ObsID ' + str(obsid) + '\n both periodogram and manual FFT method'+ '\n Whole time interval'+'\n Energy range: '+str(E1)+'keV-'+str(E2)+'keV',fontsize=12)
ax1.semilogy(pdgm_f,pdgm_ps,'b-')#/np.mean(pdgm_ps),'b-') #periodogram; arrays already truncated!
ax1.set_xlabel('Hz',fontsize=12)
ax1.set_ylabel('Normalized power spectrum',fontsize=10)
ax2.semilogy(manual_f,manual_ps,'r-')#/np.mean(manual_ps),'r-') #manual FFT; arrays already truncated!
ax2.set_xlabel('Hz',fontsize=12)
ax2.set_ylabel('Normalized power spectrum',fontsize=10)
if xlims[0] == True:
ax1.set_xlim([xlims[1],xlims[2]])
ax2.set_xlim([xlims[1],xlims[2]])
if vlines[0] == True:
ax1.axvline(x=vlines[1],color='k',alpha=0.5,lw=0.5)
ax2.axvline(x=vlines[1],color='k',alpha=0.5,lw=0.5)
ax2.axhline(y=2,color='k',alpha=0.3,lw=0.3)
plt.subplots_adjust(hspace=0.2)
if mode == 'show':
plt.show()
elif mode == 'save':
filename = 'ps_' + obsid + '_bin' + str(tbin_size) + 's_both_'+str(E1)+'keV-'+str(E2)+'keV.pdf'
plt.savefig(parent_folder+'/'+filename,dpi=900)
plt.close()
return pdgm_f, pdgm_ps, manual_f, manual_ps
def partial_tE(eventfile,par_list,tbin_size,Ebin_size,t1,t2,E1,E2,mode,ps_type,oversampling,xlims,vlines):
"""
Plot the time series for a desired time interval and desired energy range.
eventfile - path to the event file. Will extract ObsID from this for the NICER files.
par_list - A list of parameters we'd like to extract from the FITS file
(e.g., from eventcl, PI_FAST, TIME, PI,)
tbin_size - the size of the time bins (in seconds!)
>> e.g., tbin_size = 2 means bin by 2s
>> e.g., tbin_size = 0.05 means by in 0.05s
Ebin_size - the size of the energy bins (in keV!)
>> e.g., Ebin_size = 0.1 means bin by 0.1keV
>> e.g., Ebin_size = 0.01 means bin by 0.01keV!
t1 - lower time boundary
t2 - upper time boundary
E1 - lower energy boundary
E2 - upper energy boundary
mode - whether we want to show or save the plot.
ps_type - obtain power spectrum through the periodogram method ('period') or
the manual FFT way ('manual') or both ('both')
oversampling - whether to perform oversampling. Array will consist of
[True/False, oversampling factor]
xlims - a list or array: first entry = True/False as to whether to impose an
xlim; second and third entry correspond to the desired x-limits of the plot
vlines - a list or array: first entry = True/False as to whether to draw
a vertical line in the plot; second entry is the equation for the vertical line
"""
if type(eventfile) != str:
raise TypeError("eventfile should be a string!")
if 'TIME' not in par_list:
raise ValueError("You should have 'TIME' in the parameter list!")
if type(par_list) != list and type(par_list) != np.ndarray:
raise TypeError("par_list should either be a list or an array!")
if E2<E1:
raise ValueError("E2 should be greater than E1!")
if t2<t1:
raise ValueError("t2 should be greater than t1!")
if mode != 'show' and mode != 'save':
raise ValueError("Mode should either be 'show' or 'save'!")
if ps_type != 'period' and ps_type != 'manual' and ps_type != 'both':
raise ValueError("ps_type should either be 'period' or 'show' or 'save'!")
if type(oversampling) != list and type(oversampling) != np.ndarray:
raise TypeError("oversampling should either be a list or an array!")
if type(xlims) != list and type(xlims) != np.ndarray:
raise TypeError("xlims should either be a list or an array!")
if type(vlines) != list and type(vlines) != np.ndarray:
raise TypeError("vlines should either be a list or an array!")
parent_folder = str(pathlib.Path(eventfile).parent)
truncated_t, truncated_t_counts, truncated_E, truncated_E_counts = Lv1_data_bin.binning_tE(eventfile,par_list,tbin_size,Ebin_size,t1,t2,E1,E2)
event_header = fits.open(eventfile)[1].header
obj_name = event_header['OBJECT']
obsid = event_header['OBS_ID']
if ps_type == 'period':
plt.figure()
pdgm_f,pdgm_ps = Lv2_ps_method.pdgm(truncated_t[:-1],truncated_t_counts,xlims,vlines,True,oversampling)
plt.title('Power spectrum for ' + obj_name + ', ObsID ' + str(obsid) + '\n Periodogram method'+ '\n Time interval: '+str(t1)+'s-'+str(t2)+'s'+'\n Energy range: '+str(E1)+'keV-'+str(E2)+'keV',fontsize=12)
if mode == 'show':
plt.show()
elif mode == 'save':
filename = 'ps_' + obsid + '_bin' + str(tbin_size) + 's_pdgm'+str(t1)+'s-'+str(t2)+'s_'+str(E1)+'keV-'+str(E2)+'keV.pdf'
plt.savefig(parent_folder+'/'+filename,dpi=900)
plt.close()
return pdgm_f, pdgm_ps
if ps_type == 'manual':
plt.figure()
manual_f,manual_ps = Lv2_ps_method.manual(truncated_t[:-1],truncated_t_counts,xlims,vlines,True,oversampling)
plt.title('Power spectrum for ' + obj_name + ', ObsID ' + str(obsid) + '\n Manual FFT method'+ '\n Time interval: '+str(t1)+'s-'+str(t2)+'s'+'\n Energy range: '+str(E1)+'keV-'+str(E2)+'keV',fontsize=12)
if mode == 'show':
plt.show()
elif mode == 'save':
filename = 'ps_' + obsid + '_bin' + str(tbin_size) + 's_manual'+str(t1)+'s-'+str(t2)+'s_'+str(E1)+'keV-'+str(E2)+'keV.pdf'
plt.savefig(parent_folder+'/'+filename,dpi=900)
plt.close()
return manual_f, manual_ps
if ps_type == 'both':
pdgm_f,pdgm_ps = Lv2_ps_method.pdgm(truncated_t[:-1],truncated_t_counts,xlims,vlines,False,oversampling)
manual_f,manual_ps = Lv2_ps_method.manual(truncated_t[:-1],truncated_t_counts,xlims,vlines,False,oversampling)
fig, (ax1,ax2) = plt.subplots(2,1)
fig.suptitle('Power spectra for ' + obj_name + ', ObsID ' + str(obsid) + '\n both periodogram and manual FFT method'+ '\n Time interval: '+str(t1)+'s-'+str(t2)+'s'+'\n Energy range: '+str(E1)+'keV-'+str(E2)+'keV',fontsize=12)
ax1.semilogy(pdgm_f,pdgm_ps,'b-')#/np.mean(pdgm_ps),'b-') #periodogram; arrays already truncated!
ax1.set_xlabel('Hz',fontsize=12)
ax1.set_ylabel('Normalized power spectrum',fontsize=10)
ax2.semilogy(manual_f,manual_ps,'r-')#/np.mean(manual_ps),'r-') #manual FFT; arrays already truncated!
ax2.set_xlabel('Hz',fontsize=12)
ax2.set_ylabel('Normalized power spectrum',fontsize=10)
if xlims[0] == True:
ax1.set_xlim([xlims[1],xlims[2]])
ax2.set_xlim([xlims[1],xlims[2]])
if vlines[0] == True:
ax1.axvline(x=vlines[1],color='k',alpha=0.5,lw=0.5)
ax2.axvline(x=vlines[1],color='k',alpha=0.5,lw=0.5)
ax2.axhline(y=2,color='k',alpha=0.3,lw=0.3)
plt.subplots_adjust(hspace=0.2)
if mode == 'show':
plt.show()
elif mode == 'save':
filename = 'ps_' + obsid + '_bin' + str(tbin_size) + 's_both'+str(t1)+'s-'+str(t2)+'s_'+str(E1)+'keV-'+str(E2)+'keV.pdf'
plt.savefig(parent_folder+'/'+filename,dpi=900)
plt.close()
return pdgm_f, pdgm_ps, manual_f, manual_ps
if __name__ == "__main__":
eventfile = '/Volumes/Samsung_T5/NICERsoft_outputs/1034070101_pipe/ni1034070101_nicersoft_bary.evt'
whole(eventfile,['TIME','PI','PI_FAST'],0.1,'show','both',[True,5],[False,0,1],[True,0.2081])
#partial_t(eventfile,['TIME','PI','PI_FAST'],0.1,0,100,'show','both',[False,5],[False,0,1],[True,0.2081])
#partial_E(eventfile,['TIME','PI','PI_FAST'],0.1,0.05,3,8,'show','both',[False,5],[False,0,1],[True,0.2081])
#partial_tE(eventfile,['TIME','PI','PI_FAST'],0.1,0.05,0,100,3,8,'show','both',[False,5],[False,0,1],[True,0.2081])