-
Notifications
You must be signed in to change notification settings - Fork 209
/
Copy pathload_dataset_script.py
132 lines (107 loc) · 4.46 KB
/
load_dataset_script.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
"""
The script has been modified using the following base script for translation:
https://github.com/huggingface/datasets/blob/master/datasets/flores/flores.py
"""
import os
import collections
import glob
import datasets
from datasets import load_dataset
from datasets import load
_DATA_URL = "https://object.pouta.csc.fi/Tatoeba-Challenge/eng-epo.tar"
# Tuple that describes a single pair of files with matching translations.
# language_to_file is the map from language (2 letter string: example 'en')
# to the file path in the extracted directory.
TranslateData = collections.namedtuple("TranslateData", ["url", "language_to_file"])
class TatotebaConfig(datasets.BuilderConfig):
"""BuilderConfig for FLoRes."""
def __init__(self, language_pair=(None, None), **kwargs):
"""BuilderConfig for FLoRes.
Args:
for the `datasets.features.text.TextEncoder` used for the features feature.
language_pair: pair of languages that will be used for translation. Should
contain 2-letter coded strings. First will be used at source and second
as target in supervised mode. For example: ("se", "en").
**kwargs: keyword arguments forwarded to super.
"""
name = "%s%s" % (language_pair[0], language_pair[1])
description = ("Translation dataset from %s to %s") % (
language_pair[0],
language_pair[1],
)
super(TatotebaConfig, self).__init__(
name=name,
description=description,
version=datasets.Version("1.1.0", ""),
**kwargs,
)
# Validate language pair.
assert "en" in language_pair, (
"Config language pair must contain `en`, got: %s",
language_pair,
)
source, target = language_pair
non_en = source if target == "en" else target
assert non_en in ["epo", "si"], ("Invalid non-en language in pair: %s", non_en)
self.language_pair = language_pair
class Tatoeba(datasets.GeneratorBasedBuilder):
"""Tatoeba machine translation dataset."""
BUILDER_CONFIGS = [
TatotebaConfig(
language_pair=("en", "epo"),
),
]
def _info(self):
source, target = self.config.language_pair
return datasets.DatasetInfo(
features=datasets.Features(
{
"translation": datasets.features.Translation(
languages=self.config.language_pair
)
}
),
supervised_keys=(source, target),
)
def _split_generators(self, dl_manager=None):
# the dl_manager is mandatory argument but we do not need that since we are already doing are downloading
# and preprocessing before hand and then pushing the data ahead
path_tmpl = "data/"
files = {}
for split in ("train", "dev", "test"):
files[split] = {
"source_file": os.path.join(path_tmpl, split, f"{split}.src"),
"target_file": os.path.join(path_tmpl, split, f"{split}.trg"),
"files": glob.glob(os.path.join(path_tmpl, split, "*")),
}
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN, gen_kwargs=files["train"]
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION, gen_kwargs=files["dev"]
),
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs=files["test"]),
]
def _generate_examples(self, files, source_file, target_file):
"""This function returns the examples in the raw (text) form."""
source_sentences, target_sentences = (
open(files[0]).read().split("\n"),
open(files[1]).read().split("\n"),
)
assert len(target_sentences) == len(
source_sentences
), "Sizes do not match: %d vs %d for %s vs %s." % (
len(source_sentences),
len(target_sentences),
source_file,
target_file,
)
source, target = self.config.language_pair
for idx, (l1, l2) in enumerate(zip(source_sentences, target_sentences)):
result = {"translation": {source: l1, target: l2}}
# Make sure that both translations are non-empty.
if all(result.values()):
yield idx, result
if __name__ == "__main__":
load_dataset("load_dataset_script.py")