-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathpreflibio.py
377 lines (332 loc) · 13.5 KB
/
preflibio.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
'''
File: io.py
Author: Nicholas Mattei ([email protected])
Date: April 4, 2013
November 6th, 2013
* Copyright (c) 2014, Nicholas Mattei and NICTA
* All rights reserved.
*
* Developed by: Nicholas Mattei
* NICTA
* http://www.nickmattei.net
* http://www.preflib.org
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of NICTA nor the
* names of its contributors may be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY NICTA ''AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL NICTA BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
About
--------------------
This file contains a set of useful modules for reading, writing, and converting
PrefLib files between the various formats.
'''
import operator
import itertools
import math
import copy
# Given a candmap and a votemap, write the output in
# Preflib format to the given file.
def write_map(candmap, nvoters, votemap, file):
#Write the header
file.write(str(len(candmap.keys())) + '\n')
#Make Candidate List
for ele in sorted(candmap.keys()):
file.write(str(ele) + "," + str(candmap[ele]) + " \n")
#Write the Number of Voters, Total number of votes and Unique Orders...
file.write(str(nvoters) + "," + str(sum(votemap.values())) + "," + str(len(votemap.keys())) + "\n")
#Write the votes.. (sorted by count)
for vote, count in sorted(votemap.items(), key=lambda x: x[1], reverse=True):
file.write(str(count) + "," + vote + "\n")
# Given a file in one of the Preflib Election Data
# formats, return a list of rankmaps.
def read_election_file(inputfile):
#first element is the number of candidates.
l = inputfile.readline()
numcands = int(l.strip())
candmap = {}
for i in range(numcands):
bits = inputfile.readline().strip().split(",")
candmap[int(bits[0].strip())] = bits[1].strip()
#now we have numvoters, sumofvotecount, numunique orders
bits = inputfile.readline().strip().split(",")
numvoters = int(bits[0].strip())
sumvotes = int(bits[1].strip())
uniqueorders = int(bits[2].strip())
rankmaps = []
rankmapcounts = []
for i in range(uniqueorders):
rec = inputfile.readline().strip()
#need to parse the rec properly..
if rec.find("{") == -1:
#its strict, just split on ,
count = int(rec[:rec.index(",")])
bits = rec[rec.index(",")+1:].strip().split(",")
cvote = {}
for crank in range(len(bits)):
cvote[int(bits[crank])] = crank+1
rankmaps.append(cvote)
rankmapcounts.append(count)
else:
count = int(rec[:rec.index(",")])
bits = rec[rec.index(",")+1:].strip().split(",")
cvote = {}
crank = 1
partial = False
for ccand in bits:
if ccand == "" or ccand == "{}":
crank += 1
elif ccand.find("{") != -1:
partial = True
t = ccand.replace("{","").replace("}","")
cvote[int(t.strip())] = crank
elif ccand.find("}") != -1:
partial = False
t = ccand.replace("}","")
cvote[int(t.strip())] = crank
crank += 1
else:
cvote[int(ccand.strip())] = crank
if partial == False:
crank += 1
rankmaps.append(cvote)
rankmapcounts.append(count)
#Sanity check:
if sum(rankmapcounts) != sumvotes or len(rankmaps) != uniqueorders:
print("Error Parsing File: Votes Not Accounted For!")
exit()
return candmap, rankmaps, rankmapcounts, numvoters
# Given a pairwise map return the weighted and unweighted majority graphs.
# and a boolean for isTournament.
def pairwise_to_relation(candmap, pairwisemap):
#compute the weighted majority relation...
majrelation = {}
isTournament = True
for cpair in itertools.combinations(candmap.keys(), 2):
#Write the bigger direction....
if pairwisemap.get(str(cpair[0])+","+str(cpair[1]), 0) > pairwisemap.get(str(cpair[1])+","+str(cpair[0]), 0):
majrelation[str(cpair[0])+","+str(cpair[1])] = pairwisemap.get(str(cpair[0])+","+str(cpair[1]), 0) - pairwisemap.get(str(cpair[1])+","+str(cpair[0]), 0)
elif pairwisemap.get(str(cpair[1])+","+str(cpair[0]), 0) > pairwisemap.get(str(cpair[0])+","+str(cpair[1]), 0):
majrelation[str(cpair[1])+","+str(cpair[0])] = pairwisemap.get(str(cpair[1])+","+str(cpair[0]), 0) - pairwisemap.get(str(cpair[0])+","+str(cpair[1]), 0)
else:
isTournament = False
unwmaj = {x: 1 for x in majrelation.keys()}
return majrelation, unwmaj, isTournament
# Given a candidate set and a vote map, pad all the votes by placing unranked
# candidates tied at the end of the vote.
def extend_partial_complete(candmap, votemap):
extended = {}
#Go through each vote...
for cvote in votemap.keys():
#extend the vote with all the non-appearing candidates.
voted = set()
#remove any { or } in the list...
cleanvote = cvote.replace("{","")
cleanvote = cleanvote.replace("}","")
for sp in cleanvote.strip().split(","):
#need to make sure that we break up and partial pieces...
ranks = sp.strip()
if (len(ranks.strip()) == 0):
print("caught")
print(votemap)
exit()
for x in ranks.strip().split(","):
voted.add(int(x.strip()))
if len(voted) != len(candmap.keys()):
tail = ""
#if the didn't rank more than 1 candidate.
if len(candmap.keys()) - len(voted) > 1:
tail = "{"
for x in candmap.keys():
if x not in voted:
tail += str(x) +","
tail = tail[:len(tail)-1]+"}"
else:
for x in candmap.keys():
if x not in voted:
tail += str(x)
#pop it on the end...
extended[cvote+","+tail] = (extended.get(cvote+","+tail, 0) + votemap[cvote])
else:
extended[cvote] = (extended.get(cvote, 0) + votemap[cvote])
return extended
# Given a set of votes, return the pairwise
# of all the candidates.
def convert_to_pairwise(candmap, votemap):
#Generate a hash of all pairs of candidates
pairwisemap = {}
ranklist = []
#Convert to a rankmap FIRST... not per pair...
for cvote in votemap.keys():
#convert vote into candidate --> rank map
cand_rank ={}
crank = 0
for rank in cvote.split(","):
rank = rank.strip("{} ")
if len(rank.split(" ")) > 1:
for cand in rank.split(" "):
cand = cand.strip("{} ")
cand_rank[cand] = crank
else:
cand_rank[rank] = crank
crank+= 1
ranklist.append(cand_rank)
#iterate over all combinations and check both directions.
for cpair in itertools.combinations(candmap.keys(), 2):
for cand_rank in ranklist:
#assign all the votes counted one way or the other if BOTH CANDIDATES APPEAR!
if str(cpair[0]) in cand_rank.keys() and str(cpair[1]) in cand_rank.keys():
if cand_rank[str(cpair[0])] < cand_rank[str(cpair[1])]:
pairwisemap[str(cpair[0])+","+str(cpair[1])] = (pairwisemap.get(str(cpair[0])+","+str(cpair[1]), 0) + votemap[cvote])
elif cand_rank[str(cpair[1])] < cand_rank[str(cpair[0])]:
pairwisemap[str(cpair[1])+","+str(cpair[0])] = (pairwisemap.get(str(cpair[1])+","+str(cpair[0]), 0) + votemap[cvote])
return pairwisemap
# Given a set of verticies and names, write out the matching
# data file format.
def write_match(vertexmap, edges, file):
#write the first line...
file.write(str(len(vertexmap.keys())) + "," + str(len(edges.keys())) + "\n")
#write the names of the verticies...
for ele in sorted(vertexmap.keys()):
file.write(str(ele) + "," + str(vertexmap[ele]) + " \n")
#write the edges... sorted by numerical first element.
for ele in sorted(edges.keys(), key=lambda x: int(x.split(",")[0])):
file.write(str(ele) + "\n")
# Pretty printer for an election result.
def pp_result_toscreen(candmap, scores):
print("\n\n{:^8}".format("n") + "|" + "{:^35}".format('Candidate') + "|" + "{:^35}".format('Score'))
print("{:-^75}".format(""))
for s in sorted(scores, key=scores.get, reverse=True):
print("{:^8}".format(str(s)) + "|" +"{:^35}".format(str(candmap[s])) + "|" + "{:^35}".format(str(scores[s])))
return 0
# Pretty printer for a profile. Print
# the preflib format to the screen.
def pp_profile_toscreen(candmap, rankmaps, rankmapcounts):
#Sort the rankmap/rankmapkey pair based on item frequency...
srmaps = [k for k, v in sorted(zip(rankmaps, rankmapcounts), key=operator.itemgetter(1), reverse=True)]
srmapc = [v for k, v in sorted(zip(rankmaps, rankmapcounts), key=operator.itemgetter(1), reverse=True)]
#pretty print the candidate map.
print("\n\n{:^8}".format("n") + "|" + "{:^35}".format('Candidate'))
print("{:-^75}".format(""))
for ccand in candmap.keys():
print("{:^8}".format(str(ccand)) + "|" + "{:^35}".format(str(candmap[ccand])))
print("{:-^75}".format(""))
#print the rank map and counts...
print("{:^8}".format("Count") + "|" + "{:^35}".format('Profile'))
for i in range(len(srmapc)):
outstr = ""
# Convert rankmap[i] to rorder which is rank --> candi
rorder = {x:[] for x in srmaps[i].values()}
for ccand in srmaps[i].keys():
rorder[srmaps[i][ccand]].append(ccand)
for cr in sorted(rorder.keys()):
if len(rorder[cr]) > 1:
#assemble a multivote.
substr = "{"
for ccand in rorder[cr]:
substr += str(ccand) + ","
outstr += substr[:len(substr)-1] + "},"
else:
outstr += str(rorder[cr][0]) + ","
print("{:^8}".format(str(srmapc[i])) + "|" + "{:^35}".format(str(outstr[:len(outstr)-1])))
# Evaluate a vote for a given score vector.
def evaluate_scoring_rule(candmap, rankmaps, rankmapcounts, scorevec):
if len(scorevec) != len(candmap):
print("Score Vector and Candidate Vector must have equal length")
exit()
#initialize the score map.
scores = {x:0 for x in candmap.keys()}
#for each rank map, for each rank, multiply...
for i in range(len(rankmaps)):
for j in rankmaps[i].keys():
scores[j] += rankmapcounts[i] * scorevec[rankmaps[i][j]-1]
return scores
# Relabel the candidates according to a given score vector so that
# the winner of the election is candidate 1.
def relabel(candmap, rankmaps, rankmapcounts, scores):
#basically, take the scores and make a candidate mapping old --> new
#then copy and modify the candmap and the rankmap... counts are the same...
cand_remapping = {}
newnum = 1
for s in sorted(scores, key=scores.get, reverse=True):
#highest score candidate goes to 1...
cand_remapping[s] = newnum
newnum += 1
re_candmap = {cand_remapping[x]:candmap[x] for x in candmap.keys()}
#same deal for the rankmaps....
re_rankmaps = []
for cmap in rankmaps:
re_rankmaps.append({cand_remapping[x]:cmap[x] for x in cmap.keys()})
return re_candmap, re_rankmaps, rankmapcounts
# Relabel the candidates according to the most common complete order.
# the winner of the election is candidate 1.
def max_relabel(candmap, rankmaps, rankmapcounts):
#find the rankmap with the max count AND it's complete...
relabelorder = 0
for x in sorted(rankmapcounts, reverse=True):
if len(rankmaps[rankmapcounts.index(x)]) == len(candmap):
relabelorder = rankmapcounts.index(x)
#basically, take the scores and make a candidate mapping old --> new
#such that the most numerous complete vote is the ranking.
#then copy and modify the candmap and the rankmap... counts are the same...
cand_remapping = {}
newnum = 1
for s in rankmaps[relabelorder].keys():
#highest score candidate goes to 1...
cand_remapping[s] = newnum
newnum += 1
re_candmap = {cand_remapping[x]:candmap[x] for x in candmap.keys()}
#same deal for the rankmaps....
re_rankmaps = []
for cmap in rankmaps:
re_rankmaps.append({cand_remapping[x]:cmap[x] for x in cmap.keys()})
return re_candmap, re_rankmaps, rankmapcounts
# Convert a rankmap to an order of candidate number...
def rankmap_to_order(rm):
order = [-1]*len(rm.keys())
for i in rm.keys():
order[rm[i]-1] = i
return order
# Convert a set of rankmap to be a mapping from Rank --> Candidate
def rankmap_convert_rank_to_candidate(rmaps):
rank_to_cand = []
for i in rmaps:
rank_to_cand.append({v:k for k, v in i.items()})
return(rank_to_cand)
#Convert a set of rank_to_candidate back to a set of rankmaps.
def rank_to_candidate_convert_to_rankmap(r_to_c):
r_m = []
for i in r_to_c:
r_m.append({v:k for k, v in i.items()})
return(r_m)
# Below is a template Main which shows off some of the
# features of this library.
if __name__ == '__main__':
# Grab and read a file.
inputfile = input("Input File: ")
inf = open(inputfile, 'r')
cmap, rmaps, rmapscounts, nvoters = read_election_file(inf)
# Pretty print to screen:
pp_profile_toscreen(cmap, rmaps, rmapscounts)
# Make a Borda scoring vector and evaluate the result.
m = len(cmap)
svec = [m - i for i in range(1,m+1)]
scores = evaluate_scoring_rule(cmap, rmaps, rmapscounts, svec)
#Pretty print results
pp_result_toscreen(cmap, scores)