You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
The content of this course changes as technology evolves, to keep up to date with changes follow me on GitHub.
Section 1. Spring 2023, Monday, 2:30 PM, Location: TBD
Section 2. Spring 2023, Online
Section 3. Spring 2023, Online
Course Description
Deep learning is a group of exciting new technologies for neural networks. Through a combination of advanced training techniques and neural network architectural components, it is now possible to create neural networks that can handle tabular data, images, text, and audio as both input and output. Deep learning allows a neural network to learn hierarchies of information in a way that is like the function of the human brain. This course will introduce the student to classic neural network structures, Convolution Neural Networks (CNN), Long Short-Term Memory (LSTM), Gated Recurrent Neural Networks (GRU), General Adversarial Networks (GAN) and reinforcement learning. Application of these architectures to computer vision, time series, security, natural language processing (NLP), and data generation will be covered. High Performance Computing (HPC) aspects will demonstrate how deep learning can be leveraged both on graphical processing units (GPUs), as well as grids. Focus is primarily upon the application of deep learning to problems, with some introduction to mathematical foundations. Students will use the Python programming language to implement deep learning using Google TensorFlow and Keras. It is not necessary to know Python prior to this course; however, familiarity of at least one programming language is assumed. This course will be delivered in a hybrid format that includes both classroom and online instruction.
Textbook
The complete text for this course is here on GitHub. This same material is also available in book format. The course textbook is “Applications of Deep Neural networks with Keras“, ISBN 9798416344269.
If you would like to cite the material from this course/book, please use the following BibTex citation:
@misc{heaton2020applications,
title={Applications of Deep Neural Networks},
author={Jeff Heaton},
year={2020},
eprint={2009.05673},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
Objectives
Explain how neural networks (deep and otherwise) compare to other machine learning models.
Determine when a deep neural network would be a good choice for a particular problem.
Demonstrate your understanding of the material through a final project uploaded to GitHub.
Syllabus
This syllabus presents the expected class schedule, due dates, and reading assignments. Download current syllabus.