-
Notifications
You must be signed in to change notification settings - Fork 348
/
Copy pathgrid-dashboard.py
428 lines (336 loc) · 9.69 KB
/
grid-dashboard.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
# /// script
# requires-python = ">=3.11"
# dependencies = [
# "altair==5.4.1",
# "hvplot==0.10.0",
# "marimo",
# "matplotlib==3.9.2",
# "numpy==2.1.1",
# "openai==1.49.0",
# "pandas==2.2.3",
# "panel==1.5.0",
# "plotly==5.24.1",
# ]
# ///
import marimo
__generated_with = "0.8.20"
app = marimo.App(
width="medium",
layout_file="layouts/grid-dashboard.grid.json",
)
@app.cell
def __(mo):
mo.md(r"""# Gapminder Dashboard""")
return
@app.cell(hide_code=True)
def __(__file__, mo):
mo.md(
rf"""
!!! tip "This notebook is best viewed as an app."
`marimo run {__file__}`
or hit `Cmd/Ctrl+.` or click the "app view" button in the bottom right.
"""
)
return
@app.cell(hide_code=True)
def __(mo):
mo.md(
"""
If you would like to see _how_ this application is made, continue down.
This application is adapted from <https://examples.holoviz.org/gallery/gapminders/gapminders.html>
"""
)
return
@app.cell
def __(mo):
mo.md(r"""# Getting the data""")
return
@app.cell
def __():
import numpy as np
import pandas as pd
import panel as pn
import marimo as mo
import altair as alt
import plotly.graph_objs as go
import plotly.io as pio
import matplotlib.pyplot as plt
import matplotlib as mpl
import hvplot.pandas # noqa
import warnings
warnings.simplefilter("ignore")
pn.extension("vega", "plotly", defer_load=True, sizing_mode="stretch_width")
mpl.use("agg")
return alt, go, hvplot, mo, mpl, np, pd, pio, plt, pn, warnings
@app.cell
def __():
XLABEL = "GDP per capita (2000 dollars)"
YLABEL = "Life expectancy (years)"
YLIM = (20, 90)
HEIGHT = 500 # pixels
WIDTH = 500 # pixels
ACCENT = "#D397F8"
PERIOD = 1000 # milliseconds
return ACCENT, HEIGHT, PERIOD, WIDTH, XLABEL, YLABEL, YLIM
@app.cell
def __(pd):
dataset = pd.read_csv(
"https://raw.githubusercontent.com/kirenz/datasets/b8f17b8fc4907748b3317554d65ffd780edcc057/gapminder.csv"
)
dataset.sample(5)
return (dataset,)
@app.cell
def __(dataset):
YEARS = [int(year) for year in dataset.year.unique()]
str(YEARS)
return (YEARS,)
@app.cell
def __(mo):
mo.md(r"""# Charting the data""")
return
@app.cell
def __(dataset, np):
# Common utility functions
def get_data(year):
df = dataset[(dataset.year == year) & (dataset.gdpPercap < 10000)].copy()
df["size"] = np.sqrt(df["pop"] * 2.666051223553066e-05)
df["size_hvplot"] = df["size"] * 6
return df
def get_title(library, year):
return f"{library}: Life expectancy vs. GDP, {year}"
def get_xlim(data):
return (
dataset["gdpPercap"].min() - 100,
dataset[dataset["gdpPercap"] < 10000].max()["gdpPercap"] + 1000,
)
return get_data, get_title, get_xlim
@app.cell
def __(
XLABEL,
YLABEL,
YLIM,
alt,
get_data,
get_title,
get_xlim,
go,
pio,
plt,
):
# Charting functions
def mpl_view(year=1952, show_legend=True):
data = get_data(year)
title = get_title("Matplotlib", year)
xlim = get_xlim(data)
plot = plt.figure(figsize=(10, 8), facecolor=(0, 0, 0, 0))
ax = plot.add_subplot(111)
ax.set_xscale("log")
ax.set_title(title)
ax.set_xlabel(XLABEL)
ax.set_ylabel(YLABEL)
ax.set_ylim(YLIM)
ax.set_xlim(xlim)
for continent, df in data.groupby("continent"):
ax.scatter(
df.gdpPercap,
y=df.lifeExp,
s=df["size"] * 5,
edgecolor="black",
label=continent,
)
if show_legend:
ax.legend(loc=4)
plt.close(plot)
return plot
pio.templates.default = None
def plotly_view(year=1952, show_legend=True):
data = get_data(year)
title = get_title("Plotly", year)
xlim = get_xlim(data)
ylim = YLIM
traces = []
for continent, df in data.groupby("continent"):
marker = dict(
symbol="circle",
sizemode="area",
sizeref=0.1,
size=df["size"],
line=dict(width=2),
)
traces.append(
go.Scatter(
x=df.gdpPercap,
y=df.lifeExp,
mode="markers",
marker=marker,
name=continent,
text=df.country,
)
)
axis_opts = dict(
gridcolor="rgb(255, 255, 255)", zerolinewidth=1, ticklen=5, gridwidth=2
)
layout = go.Layout(
title=title,
showlegend=show_legend,
xaxis=dict(title=XLABEL, type="linear", range=xlim, **axis_opts),
yaxis=dict(title=YLABEL, range=ylim, **axis_opts),
autosize=True,
paper_bgcolor="rgba(0,0,0,0)",
)
return go.Figure(data=traces, layout=layout)
def altair_view(
year=1952, show_legend=True, height="container", width="container"
):
data = get_data(year)
title = get_title("Altair/ Vega", year)
xlim = get_xlim(data)
legend = {} if show_legend else {"legend": None}
return (
alt.Chart(data)
.mark_circle()
.encode(
alt.X(
"gdpPercap:Q",
scale=alt.Scale(type="log", domain=xlim),
axis=alt.Axis(title=XLABEL),
),
alt.Y(
"lifeExp:Q",
scale=alt.Scale(zero=False, domain=YLIM),
axis=alt.Axis(title=YLABEL),
),
size=alt.Size("pop:Q", scale=alt.Scale(type="log"), legend=None),
color=alt.Color(
"continent", scale=alt.Scale(scheme="category10"), **legend
),
tooltip=["continent", "country"],
)
.configure_axis(grid=False)
.properties(
title=title, height=height, width=width, background="rgba(0,0,0,0)"
)
.configure_view(fill="white")
.interactive()
)
def hvplot_view(year=1952, show_legend=True):
data = get_data(year)
title = get_title("hvPlot/ Bokeh", year)
xlim = get_xlim(data)
return data.hvplot.scatter(
"gdpPercap",
"lifeExp",
by="continent",
s="size_hvplot",
alpha=0.8,
logx=True,
title=title,
legend="bottom_right",
hover_cols=["country"],
ylim=YLIM,
xlim=xlim,
ylabel=YLABEL,
xlabel=XLABEL,
height=400,
)
return altair_view, hvplot_view, mpl_view, plotly_view
@app.cell
def __(HEIGHT, altair_view, hvplot_view, mo, mpl_view, plotly_view):
mo.ui.tabs(
{
"matplotlib": mpl_view(1952, True),
"plotly": plotly_view(),
"altair": altair_view(height=HEIGHT - 100),
"hvplot": hvplot_view(),
}
)
return
@app.cell
def __(mo):
mo.md(r"""# Building a dashboard""")
return
@app.cell
def __(mo):
mo.md("""## Creating widgets""")
return
@app.cell
def __(YEARS, mo):
get_year, set_year = mo.state(YEARS[-1])
return get_year, set_year
@app.cell
def __(YEARS, get_year, mo, set_year):
year = mo.ui.slider(
value=get_year(), steps=YEARS, full_width=True, on_change=set_year
)
show_legend = mo.ui.checkbox(value=True, label="Show Legend")
return show_legend, year
@app.cell
def __(mo, show_legend, year):
mo.vstack(
[
mo.md(f"Year: **{year.value}**"),
year,
show_legend,
]
)
return
@app.cell
def __(mo):
autoplay = mo.ui.refresh(options=["1s", "3s", "5s"], label="Autoplay")
autoplay
return (autoplay,)
@app.cell
def __(YEARS, autoplay, set_year):
autoplay
def increment(v):
if v is None:
return YEARS[-1]
index = (YEARS.index(v) + 1) % len(YEARS)
return YEARS[index]
set_year(increment)
return (increment,)
@app.cell
def __(mo):
mo.md(r"""## Creating the charts, reactive to the widgets""")
return
@app.cell
def __(mpl_view, show_legend, year):
mpl_view(year=year.value, show_legend=show_legend.value)
return
@app.cell
def __(plotly_view, show_legend, year):
plotly_view(year=year.value, show_legend=show_legend.value)
return
@app.cell
def __(HEIGHT, altair_view, show_legend, year):
altair_view(year=year.value, show_legend=show_legend.value, height=HEIGHT - 100)
return
@app.cell
def __(hvplot_view, show_legend, year):
hvplot_view(year=year.value, show_legend=show_legend.value)
return
@app.cell(hide_code=True)
def __(mo):
mo.md(
"""
## Add any extra flair
Next we will toggle to "App view" (hit `Cmd/Ctrl+.` or click the "app view") in order to layout our dashboard with the grid layout editor.
"""
)
return
@app.cell
def __(mo):
mo.image("https://marimo.io/logotype-wide.svg")
return
@app.cell(hide_code=True)
def __(mo):
mo.md(
"""
## 🎓 Info
Here you can try out four different plotting libraries controlled by a couple of widgets, for Hans Rosling's [gapminder](https://demo.bokeh.org/gapminder) example.
This application is inspired by [Panel](https://examples.holoviz.org/gallery/gapminders/gapminders.html).
"""
)
return
if __name__ == "__main__":
app.run()