diff --git a/server.R b/server.R index 5dea421..4a01631 100644 --- a/server.R +++ b/server.R @@ -7,58 +7,68 @@ library(shinythemes) library(plotly) #webshot::install_phantomjs() #To plot into pdf Heatmaply +#Adding execution time limit +now <- Sys.time() + shinyServer(function(input, output,session){ - - + #Adding execution time limit + observe({ + invalidateLater(900000) #Test every 15 mins + print(paste("Actual Time: ", Sys.time(), " - Endtime: ", now + 10800)) + if (Sys.time() > now + 10800) { #3 hours maximum time + print("Stop the App") + stopApp() + } + }) + #Setting maximum file size for uploading (1000 MB) options(shiny.maxRequestSize=1000*1024^2) - options(shiny.sanitize.errors = TRUE) - + options(shiny.sanitize.errors = TRUE) #Resolution of the tiff images - ppi<-200 - - + ppi<-200 + + #Hidding/Showing tabs of mainpanel, run and clear buttons, ... observeEvent(input$run,{ shinyjs::hide(id="run") shinyjs::show(id="after_run") - - + + if (input$datatype=="TSV" & ((length(grep(".tsv",input[["fileinput"]]$datapath)) + length(grep(".txt",input[["fileinput"]]$datapath)))==length(input[["fileinput"]]$datapath))){ - + mat_list<-list() for (w in 1:length(input[["fileinput"]]$datapath)){ mat <- fread(input[["fileinput"]]$datapath[w],header=T,sep="\t",data.table=F) condition <- as.character(length(grep("TRUE", (c("CHROM", "POS", "REF", "ALT") %in% colnames(mat))))==4) - + mat_list[[w]] <- condition } mat_vector <- as.vector(do.call(cbind, mat_list)) } else { mat_vector<-c("mat_vector") } - + if (input$datatype=="Excel" & (length(grep(".xls",input[["fileinput"]]$datapath))==length(input[["fileinput"]]$datapath))){ mat_list<-list() for (w in 1:length(input[["fileinput"]]$datapath)){ - + if (length(grep(".xlsx",input[["fileinput"]]$datapath[w]))>0){ mat<-read.xlsx(input[["fileinput"]]$datapath[w],1) } else { mat<-data.frame(read_xls(input[["fileinput"]]$datapath[w],col_names = TRUE,col_types = "text")) } - + condition <- as.character(length(grep("TRUE", (c("CHROM", "POS", "REF", "ALT") %in% colnames(mat))))==4) - + mat_list[[w]] <- condition } mat_vector_2 <- as.vector(do.call(cbind, mat_list)) } else { mat_vector_2<-c("mat_vector_2") } - - + + if (length(grep("FALSE", mat_vector))!=0 | length(grep("FALSE", mat_vector_2))!=0 | (input$datatype=="VCF" & length(grep(".vcf",input[["fileinput"]]$datapath))!=length(input[["fileinput"]]$datapath)) | @@ -70,14 +80,14 @@ shinyServer(function(input, output,session){ shinyjs::show(id="mainpanel") } }) - + observeEvent(input$clear, { shinyjs::js$refresh() }) - - - + + + #Library loading library(MutationalPatterns) library(reshape2) @@ -106,8 +116,8 @@ shinyServer(function(input, output,session){ return("BSgenome.Hsapiens.UCSC.hg38") } }) - - + + filedata <- reactive({ infile <- input$fileinput #file loaded if (is.null(infile)) { @@ -115,32 +125,32 @@ shinyServer(function(input, output,session){ return(NULL) } else {return(infile)} }) - + output$run_button <- renderUI({ if (!is.null(filedata())) { - - + + div( #Run button actionButton("run","Run",class = "btn-primary"), - - + + #Busy indicator busyIndicator("Running",wait=0) - + ) - + } else if (is.null(filedata())) { HTML("") } }) - + #######WHEN RUN BUTTON## observeEvent(input$run,{ all_ok_for_run <- TRUE - - + + if (!is.null(filedata())) { output$error_input <- renderUI({ HTML("All well!") @@ -148,7 +158,7 @@ shinyServer(function(input, output,session){ } else { all_ok_for_run <- FALSE } - + @@ -158,27 +168,27 @@ shinyServer(function(input, output,session){ vcfs<-eventReactive((all_ok_for_run==TRUE),{ inFile<<-input$fileinput - + #VCF if (input$datatype=="VCF"){ - + #Read vcf for MutationalPatterns return(read_vcfs_as_granges(inFile$datapath,inFile$name,ref_genome(),group = "auto+sex", check_alleles = TRUE)) } - - + + #MAF if (input$datatype=="MAF"){ aux<-fread(inFile$datapath,header=T,sep="\t",skip="#",data.table=F) aux<-aux[,c("Chromosome","Start_Position","Reference_Allele","Tumor_Seq_Allele2","Tumor_Sample_Barcode")] colnames(aux)[1:4]<-c("#CHROM","POS","REF","ALT") - + #Condition in case "chr" prefix is present at CHROM column in input file if (length(grep("chr",aux))>0){ aux[,c("#CHROM")]<-sapply(strsplit(aux[,c("#CHROM")],"chr"),"[",2) } - + aux$ID<-"." aux$QUAL<-"." aux$FILTER<-"PASS" @@ -196,19 +206,19 @@ shinyServer(function(input, output,session){ return(read_vcfs_as_granges(ff,names(ff),ref_genome(),group = "auto+sex", check_alleles = TRUE)) } - + #TSV if (input$datatype=="TSV"){ - + ff_list<-list() for (w in 1:length(inFile$datapath)){ aux<-fread(inFile$datapath[w],header=T,sep="\t",data.table=F) - + #Condition in case "chr" prefix is present at CHROM column in input file if (length(grep("chr",aux))>0){ aux$CHROM<-sapply(strsplit(aux$CHROM,"chr"),"[",2) } - + colnames(aux)[1]<-"#CHROM" aux$ID<-"." aux$QUAL<-"." @@ -217,30 +227,30 @@ shinyServer(function(input, output,session){ ff_list[[w]]<-tempfile("tp",fileext=".vcf") write.table(aux,file=ff_list[[w]],row.names=F,quote=F,sep="\t") } - + ff<-do.call("c",ff_list) - + return(read_vcfs_as_granges(ff,inFile$name,ref_genome(),group = "auto+sex", check_alleles = TRUE)) } - + #Excel if (input$datatype=="Excel"){ - + ff_list<-list() for (w in 1:length(inFile$datapath)){ - + if (length(grep(".xlsx",inFile$datapath[w]))>0){ aux<-read.xlsx(inFile$datapath[w],1) } else { aux<-data.frame(read_xls(inFile$datapath[w],col_names = TRUE,col_types = "text")) } - - + + #Condition in case "chr" prefix is present at CHROM column in input file if (length(grep("chr",aux))>0){ aux$CHROM<-sapply(strsplit(aux$CHROM,"chr"),"[",2) } - + colnames(aux)[1]<-"#CHROM" aux$ID<-"." aux$QUAL<-"." @@ -249,16 +259,16 @@ shinyServer(function(input, output,session){ ff_list[[w]]<-tempfile("tp",fileext=".vcf") write.table(aux,file=ff_list[[w]],row.names=F,quote=F,sep="\t") } - + ff<-do.call("c",ff_list) - + return(read_vcfs_as_granges(ff,inFile$name,ref_genome(),group = "auto+sex", check_alleles = TRUE)) } - + }) - - + + ####################################### #Mutation Matrix creation [mut_mat] ####################################### @@ -271,10 +281,10 @@ shinyServer(function(input, output,session){ } if (input$genome=="hg38"){ return(mut_matrix(vcfs(),"BSgenome.Hsapiens.UCSC.hg38")) - } + } }) - - + + ####################################### #COSMIC Mutational Signatures loading (and adjustment) from COSMIC website [cancer_signatures] ####################################### @@ -283,19 +293,19 @@ shinyServer(function(input, output,session){ cancer_signatures_aux <- cancer_signatures[order(cancer_signatures[,1]),] cancer_signatures <- as.matrix(cancer_signatures_aux[,4:33]) cancer_signatures_mut_types <- as.matrix(cancer_signatures_aux[,1:3]) - - + + ####################################### #Fitting mutations in samples (mut_mat) to COSMIC signatures [fit_res] ####################################### fit_res <- reactive({ fit_to_signatures(mut_mat(), cancer_signatures) }) - - + + #Auxiliar files of aetiology and known signatures by cancer type (from COSMIC) proposed_etiology <- fread("./aux_files/proposed_etiology_COSMIC_signatures.txt",sep="\t",header=F,data.table=F)[,2] known_cancer_signatures<-read.table("./aux_files/cancermatrix.tsv",header=TRUE,sep="\t",row.names=1) - - + + #divisionRel function creation to print final dataframe divisionRel<-function(df){ sum_df<-sapply(df,sum) @@ -304,37 +314,37 @@ shinyServer(function(input, output,session){ } return(df) } - + ################################################################ output$custom_error<-renderUI({ - + if (input$datatype=="TSV" & ((length(grep(".tsv",input[["fileinput"]]$datapath)) + length(grep(".txt",input[["fileinput"]]$datapath))) == length(input[["fileinput"]]$datapath))){ - + mat_list<-list() for (w in 1:length(input[["fileinput"]]$datapath)){ mat <- fread(input[["fileinput"]]$datapath[w],header=T,sep="\t",data.table=F) condition <- as.character(length(grep("TRUE", (c("CHROM", "POS", "REF", "ALT") %in% colnames(mat))))==4) - + mat_list[[w]] <- condition } mat_vector <- as.vector(do.call(cbind, mat_list)) samples_failed<-grep("FALSE", mat_vector) } else { mat_vector<-c("mat_vector") - + if (input$datatype=="Excel" & (length(grep(".xls",input[["fileinput"]]$datapath))==length(input[["fileinput"]]$datapath))){ mat_list<-list() for (w in 1:length(input[["fileinput"]]$datapath)){ - + if (length(grep(".xlsx",input[["fileinput"]]$datapath[w]))>0){ mat<-read.xlsx(input[["fileinput"]]$datapath[w],1) } else { mat<-data.frame(read_xls(input[["fileinput"]]$datapath[w],col_names = TRUE,col_types = "text")) } - + condition <- as.character(length(grep("TRUE", (c("CHROM", "POS", "REF", "ALT") %in% colnames(mat))))==4) - + mat_list[[w]] <- condition } mat_vector_2 <- as.vector(do.call(cbind, mat_list)) @@ -343,16 +353,16 @@ shinyServer(function(input, output,session){ mat_vector_2<-c("mat_vector_2") samples_failed<-NULL } - + } - - - + + + if (input$datatype=="VCF" & length(grep(".vcf",input[["fileinput"]]$datapath))!=length(input[["fileinput"]]$datapath)){ aux<-grep(".vcf",input[["fileinput"]]$datapath,invert=TRUE) samples_bad_format<-paste(input[["fileinput"]]$name[aux], collapse=" | ") } else { - + if (input$datatype=="TSV" & (length(grep(".tsv",input[["fileinput"]]$datapath)) + length(grep(".txt",input[["fileinput"]]$datapath))) != length(input[["fileinput"]]$datapath)){ aux1<-grep(".tsv",input[["fileinput"]]$datapath,invert=TRUE) aux2<-input[["fileinput"]]$name[aux1] @@ -360,7 +370,7 @@ shinyServer(function(input, output,session){ samples_bad_format<-paste(aux2[aux3], collapse=" | ") } else{ - + if (input$datatype=="Excel" & length(grep(".xls",input[["fileinput"]]$datapath)) != length(input[["fileinput"]]$datapath)){ aux<-grep(".xls",input[["fileinput"]]$datapath,invert=TRUE) samples_bad_format<-paste(input[["fileinput"]]$name[aux], collapse=" | ") @@ -374,9 +384,9 @@ shinyServer(function(input, output,session){ } } } - - - + + + tags$style(HTML(paste(".shiny-output-error-formats {visibility: hidden;} .shiny-output-error-formats:before {visibility: visible; color: orangered; content:'Format error in uploaded file/s: ", samples_bad_format," Please select the correct input file format before uploading your file/s.';} @@ -391,13 +401,13 @@ shinyServer(function(input, output,session){ }) ################################################################ - + #Plot selectize to select samples to plot. output$selected_samples<-renderUI({ - + #Error managemente for file format error_message<-"File format error, please select the correct input file format before uploading your file/s." - + if (input$datatype=="VCF"){ validate( need(length(grep(".vcf",input[["fileinput"]]$datapath))==length(input[["fileinput"]]$datapath),error_message), errorClass = "formats" @@ -458,7 +468,7 @@ shinyServer(function(input, output,session){ } - + if (input$datatype=="MAF"){ validate( need(length(grep(".maf",input[["fileinput"]]$datapath))>0,error_message),errorClass = "formats" @@ -468,13 +478,13 @@ shinyServer(function(input, output,session){ ) } - - + + if (length(vcfs())==1){ mysamp<-colnames(as.data.frame(fit_res()$contribution)) selectInput("mysamp","Select your samples",mysamp, multiple=TRUE, selectize = FALSE, size=1, selected=colnames(as.data.frame(fit_res()$contribution))) } else { - + if (input$tab=="reconst"){ mysamp<-colnames(as.data.frame(fit_res()$contribution)) selectInput("mysamp","Select your samples",mysamp, multiple=TRUE, selectize = FALSE, size=6, selected = mysamp[1]) @@ -484,17 +494,17 @@ shinyServer(function(input, output,session){ } } }) - + output$selected_cancer_types<-renderUI({ - + if (input$tab=="comp_canc_sign"){ - + selectInput("mycancers","Select the cancers to compare", c("All cancers",colnames(read.table("./aux_files/cancermatrix.tsv",header=TRUE,sep="\t",row.names=1))), multiple=TRUE, selectize=FALSE, size=10, selected="All cancers") - + } - + }) - + #Checkbox to decide if mean is plotted. output$mean_checkbox<-renderUI({ if (input$tab=="smp" | input$tab=="contrib" | input$tab=="comp_canc_sign"){ @@ -504,15 +514,15 @@ shinyServer(function(input, output,session){ } }) - - - + + + #Select which samples use to plot. - my_contributions<- reactive({ - + my_contributions<- reactive({ + #Error management if (length(input$mysamp)==0) return(invisible(NULL)) - + if ("All samples" %in% input$mysamp){ if(input$meancheck==TRUE) { @@ -522,11 +532,11 @@ shinyServer(function(input, output,session){ } else { aux<-divisionRel(as.data.frame(fit_res()$contribution)) con<-data.frame(aux) - colnames(con)<-c(colnames(aux)) + colnames(con)<-c(colnames(aux)) } - + } else { - if(input$meancheck==TRUE) { + if(input$meancheck==TRUE) { aux<-divisionRel(as.data.frame(fit_res()$contribution[,input$mysamp])) con<-data.frame(aux, mean = apply(aux,1,mean)) colnames(con)<-c(colnames(aux),"mean") @@ -536,88 +546,88 @@ shinyServer(function(input, output,session){ colnames(con)<-colnames(aux) } } - - - + + + #Fixing colname of one sample (without mean) if (ncol(con)==1){ colnames(con)<-setdiff(input$mysamp,c("All samples")) } - + #Fixing colname of one sample (with mean) if (ncol(con)==1 & input$meancheck==TRUE & input$mysamp!="All samples"){ colnames(con)[1]<-setdiff(input$mysamp,c("All samples")) } - - + + return(con) - + }) - - - - - - - - + + + + + + + + + ################################################################################ ################################################################################ ################################################################################ - ################################################################################ - - - - - - - - - + + + + + + + + + ####################################### #PLOT Somatic Mutation Prevalence (number mutations per megabase) ####################################### - + #Selection of type of study and MB affected by it output$kb_sequenced<-renderUI({ - + if (input$studytype == "Targeted Sequencing"){ numericInput("bases_sequenced","Kilobases sequenced",value = 10,min = 1) } - + }) - + #According to Alexandrov et al. 2013 megabases<-reactive({ if (input$studytype == "Whole Genome Sequencing"){ return(2800) } - + if (input$studytype == "Whole Exome Sequencing"){ return(30) } - + if (input$studytype == "Targeted Sequencing"){ return(input$bases_sequenced/1000) } }) - - + + #Selection of samples to plot - mutation_counts<- reactive({ - + mutation_counts<- reactive({ + if ("All samples" %in% input$mysamp){ - + if(input$meancheck==TRUE) { mc<-data.frame(samples=c(names(vcfs()),"mean"),smp=(c(sapply(vcfs(),length),mean(sapply(vcfs(),length))))/megabases()) } else { mc<-data.frame(samples=names(vcfs()),smp=(sapply(vcfs(),length))/megabases()) } - + } else { - - if(input$meancheck==TRUE) { + + if(input$meancheck==TRUE) { aux<-input$mysamp mc<-data.frame(samples=c(names(vcfs()[aux]),"mean"), smp=(c(sapply(vcfs()[aux],length),mean(sapply(vcfs()[aux],length))))/megabases()) } else { @@ -626,14 +636,14 @@ shinyServer(function(input, output,session){ } return(mc) }) - - + + # PLOT somatic mutation prevalence output$smp <- renderPlot({ #Error management if (length(input$mysamp)==0) return(invisible(NULL)) - + mutation_counts_new<-data.frame(samples=mutation_counts()$samples,smp=round(mutation_counts()$smp,1)) @@ -641,63 +651,63 @@ shinyServer(function(input, output,session){ plot_smp + geom_bar(stat="identity",fill="orangered2") + theme_minimal() + geom_text(aes(label=smp), size=5, position = position_stack(vjust = 0.5), colour="white") + coord_flip() + labs(x = "", y = "Somatic mutation prevalence (number of mutations per megabase)") + theme(axis.text=element_text(size=12), axis.title = element_text(size = 13, face = "bold"), panel.grid.major.y=element_blank(), panel.grid.minor.y=element_blank(), panel.grid.major.x=element_blank(), panel.grid.minor.x=element_blank()) - }, height = function(x=length(colnames(my_contributions())) ){ if (x < 5) {return(250)} - if (x >100) {return(10000)} - if (x<=100 & x>=5) {return (50*x)} + }, height = function(x=length(colnames(my_contributions())) ){ if (x < 5) {return(250)} + if (x >100) {return(10000)} + if (x<=100 & x>=5) {return (50*x)} }) - - #Download Plot somatic mutation prevalence + + #Download Plot somatic mutation prevalence output$download_smp_plot <- downloadHandler ( filename = function(){ paste("mut_prevalence_plot",input$type_smp_plot, sep=".") }, content = function(ff) { mutation_counts_new<-data.frame(samples=mutation_counts()$samples,smp=round(mutation_counts()$smp,1)) - + plot_smp<-ggplot(data=mutation_counts_new,aes(x=samples,y=smp)) - - plot_smp + geom_bar(stat="identity",fill="orangered2") + theme_minimal() + geom_text(aes(label=smp), size=5, position = position_stack(vjust = 0.5), colour="white") + coord_flip() + labs(x = "", y = "Somatic mutation prevalence (number of mutations per megabase)") + theme(axis.text=element_text(size=12), axis.title = element_text(size = 13, face = "bold"), panel.grid.major.y=element_blank(), panel.grid.minor.y=element_blank(), panel.grid.major.x=element_blank(), panel.grid.minor.x=element_blank()) - + + plot_smp + geom_bar(stat="identity",fill="orangered2") + theme_minimal() + geom_text(aes(label=smp), size=5, position = position_stack(vjust = 0.5), colour="white") + coord_flip() + labs(x = "", y = "Somatic mutation prevalence (number of mutations per megabase)") + theme(axis.text=element_text(size=12), axis.title = element_text(size = 13, face = "bold"), panel.grid.major.y=element_blank(), panel.grid.minor.y=element_blank(), panel.grid.major.x=element_blank(), panel.grid.minor.x=element_blank()) + ggsave(ff,height=min(2*nrow(mutation_counts_new),40),width=25,dpi=ppi,units="cm") } ) - - #Download Table somatic mutation prevalence + + #Download Table somatic mutation prevalence output$download_smp_table <- downloadHandler( filename="Somatic_mut_prev.txt", content=function (file){ mutation_counts_new<-data.frame(Sample=mutation_counts()$samples,Somatic_Mutation_Prevalence=round(mutation_counts()$smp,1),Number_of_Samples=length(names(vcfs()))) - + write.table(x = mutation_counts_new, file = file, sep = "\t", quote=F, row.names=F) } ) - - + + ####################################### #PLOT 96 nucleotide changes profile (samples individually) ####################################### - + #Plot 96 profile output$prof96 <- renderPlot({ aux_96_profile<-as.matrix(mut_mat()[,setdiff(colnames(my_contributions()),c("mean"))]) colnames(aux_96_profile)<-setdiff(colnames(my_contributions()),c("mean")) - + aux_ymax<-as.data.frame(aux_96_profile) rownames(aux_ymax)<-1:96 max_ymax<-max(divisionRel(aux_ymax)) - + plot_96_profile(aux_96_profile,ymax = max_ymax) + scale_y_continuous(breaks = seq(0, max_ymax, 0.05)) - }, height = function(x=length(colnames(my_contributions())) ){ if (x < 5) {return(400)} - if (x >100) {return(10000)} - if (x<=100 & x>=5) {return (20+100*x)} + }, height = function(x=length(colnames(my_contributions())) ){ if (x < 5) {return(400)} + if (x >100) {return(10000)} + if (x<=100 & x>=5) {return (20+100*x)} } ) - - #Download Plot 96 profile + + #Download Plot 96 profile output$download_prof96_plot <- downloadHandler ( filename = function(){ paste("prof96_plot",input$type_prof96_plot, sep=".") @@ -705,53 +715,53 @@ shinyServer(function(input, output,session){ content = function(ff) { aux_96_profile<-as.matrix(mut_mat()[,setdiff(colnames(my_contributions()),c("mean"))]) colnames(aux_96_profile)<-setdiff(colnames(my_contributions()),c("mean")) - + aux_ymax<-as.data.frame(aux_96_profile) rownames(aux_ymax)<-1:96 max_ymax<-max(divisionRel(aux_ymax)) - + plot_96_profile(aux_96_profile,ymax = max_ymax) + scale_y_continuous(breaks = seq(0, max_ymax, 0.05)) - + ggsave(ff,height=min(4*ncol(aux_96_profile),40),width=25,dpi=ppi,units="cm") } ) - - + + #Download Plot 96 TABLE - - + + output$download_prof96_table <- downloadHandler( filename="Mutational_Profile.txt", content=function (file){ aux_96_profile<-as.matrix(mut_mat()[,setdiff(colnames(my_contributions()),c("mean"))]) aux_ymax<-divisionRel(as.data.frame(aux_96_profile)) - - + + write.table(x = data.frame(Substitution_Type = cancer_signatures_mut_types[,1], Trinucleotide = cancer_signatures_mut_types[,2], Somatic_Mutation_Type = cancer_signatures_mut_types[,3], aux_ymax), file = file, sep = "\t", quote=F, row.names=F) } ) - - - - + + + + ####################################### ### Plot heatmap with contributions ####################################### - - + + #DataTable output$contr <- renderDataTable({ data.frame(Signature = 1:30, Proposed_Etiology = proposed_etiology, round(my_contributions(),3)) }, options = list(lengthChange=FALSE,pageLength=30, paging=FALSE, searching=FALSE, info=FALSE) ) - - + + #Download Table output$download_contr <- downloadHandler( filename="COSMIC_sign_contributions.txt", content=function (file){ write.table(x = data.frame(Signature = 1:30, Proposed_Etiology = proposed_etiology, round(my_contributions(),3)), file = file, sep = "\t", quote=F, row.names=F)}) - - + + #check if column or row dendogram is needed output$row_dendro_heatmap<-renderUI({ if (input$tab == "contrib"){ @@ -767,7 +777,7 @@ shinyServer(function(input, output,session){ return(invisible(NULL)) } }) - + #check if sample names are needed output$heatmap_sample_names<-renderUI({ if (input$tab == "contrib" | input$tab == "comp_canc_sign"){ @@ -779,131 +789,131 @@ shinyServer(function(input, output,session){ #HeatMap output$heatmap_signatures <- renderPlotly({ - + if (length(input$row_d_heatmap)==0) return(invisible(NULL)) if (length(input$col_d_heatmap)==0) return(invisible(NULL)) - + a<-my_contributions() if (ncol(a)==1) colnames(a)<-colnames(my_contributions()) ## fix colnames when there is only one sample - - - rownames(a)<-colnames(cancer_signatures)[1:30] + + + rownames(a)<-colnames(cancer_signatures)[1:30] colorends <- c("white","red") dendro <- "none" if (input$row_d_heatmap=="yes") dendro<-"row" - if (input$col_d_heatmap=="yes") dendro<-"column" + if (input$col_d_heatmap=="yes") dendro<-"column" if (input$row_d_heatmap=="yes" & input$col_d_heatmap=="yes") dendro<-"both" - + if (input$samplenames==FALSE){ colnames(a)<-1:length(colnames(a)) } - + heatmaply(a, scale_fill_gradient_fun = scale_fill_gradientn(colours = colorends, limits = c(0,1)), dendrogram = dendro, k_row = 1, k_col = 1, column_text_angle = 90, distfun = 'pearson' ) }) - - - #Download HeatMap + + + #Download HeatMap output$download_signatures_plot <- downloadHandler ( - filename = function(){paste("signatures_plot",input$type_signatures_plot, sep=".")}, + filename = function(){paste("signatures_plot",input$type_signatures_plot, sep=".")}, content = function(ff) { - - + + a<-my_contributions() if (ncol(a)==1) colnames(a)<-colnames(my_contributions()) ## fix colnames when there is only one sample - rownames(a)<-colnames(cancer_signatures)[1:30] + rownames(a)<-colnames(cancer_signatures)[1:30] colorends <- c("white","red") dendro <- "none" if (input$row_d_heatmap=="yes") dendro<-"row" - if (input$col_d_heatmap=="yes") dendro<-"column" + if (input$col_d_heatmap=="yes") dendro<-"column" if (input$row_d_heatmap=="yes" & input$col_d_heatmap=="yes") dendro<-"both" - + if (input$samplenames==FALSE){ colnames(a)<-1:length(colnames(a)) } - + heatmaply(a, scale_fill_gradient_fun = scale_fill_gradientn(colours = colorends, limits = c(0,1)), dendrogram = dendro, k_row = 1, k_col = 1, column_text_angle = 90, distfun = 'pearson', file = ff) }) - - + + ####################################### ### PLOT Reconstructed Mutational Profile ####################################### - + #Plot reconstructed profile output$reconst <- renderPlot({ validate( need(length(input$mysamp)==1,"Sample selection error, please select just one sample at a time to visualize its reconstructed mutational profile."), errorClass = "reconstructed" ) - + if (input$mysamp=="All samples") return(invisible(NULL)) - - + + original_prof <- mut_mat()[,input$mysamp] reconstructed_prof <- fit_res()$reconstructed[,input$mysamp] - + aux_ymax<-data.frame(original_prof,reconstructed_prof) max_ymax<-max(divisionRel(aux_ymax)) - - + + plot_compare_profiles(original_prof,reconstructed_prof,profile_names=c("Original","Reconstructed"),profile_ymax = max_ymax) - + }) - - - - #Download Plot reconstructed profile + + + + #Download Plot reconstructed profile output$download_reconst_plot <- downloadHandler ( filename = function(){ paste("reconstructed_plot",input$type_reconst_plot, sep=".") }, content = function(ff) { - - + + original_prof <- mut_mat()[,input$mysamp] reconstructed_prof <- fit_res()$reconstructed[,input$mysamp] - + aux_ymax<-data.frame(original_prof,reconstructed_prof) max_ymax<-max(divisionRel(aux_ymax)) - - + + plot_compare_profiles(original_prof,reconstructed_prof,profile_names=c("Original","Reconstructed"),profile_ymax = max_ymax) - - - + + + ggsave(ff,height=6,width=10,dpi=ppi) } ) - + #Download reconstructed TABLE - - + + output$download_reconst_table <- downloadHandler( filename="reconstructed_table.txt", content=function (file){ original_prof <- mut_mat()[,input$mysamp] reconstructed_prof <- fit_res()$reconstructed[,input$mysamp] - + aux_ymax<-divisionRel(data.frame(Original_Profile = original_prof, Reconstructed_Profile = reconstructed_prof)) - - + + write.table(x = data.frame(Substitution_Type = cancer_signatures_mut_types[,1], Trinucleotide = cancer_signatures_mut_types[,2], Somatic_Mutation_Type = cancer_signatures_mut_types[,3], aux_ymax), file = file, sep = "\t", quote=F, row.names=F) } ) - - - + + + ####################################### ### Plot - Comparison with other cancers ####################################### - + #check if column or row dendogram is needed output$row_dendro_cancers<-renderUI({ if (input$tab == "comp_canc_sign"){ @@ -919,105 +929,105 @@ shinyServer(function(input, output,session){ return(invisible(NULL)) } }) - + #HeatMap output$heatmap_known <- renderPlotly({ - + if (length(input$mysamp)==0) return(invisible(NULL)) if (length(input$mycancers)==0) return(invisible(NULL)) - + if ("All cancers" %in% input$mycancers) my.sel.cancers<-colnames(known_cancer_signatures) else my.sel.cancers<-intersect(input$mycancers,colnames(known_cancer_signatures)) - + a<-data.frame(my_contributions()[1:30,], known_cancer_signatures[1:30,my.sel.cancers]) rownames(a)<-colnames(cancer_signatures)[1:30] if (ncol(my_contributions())==1) colnames(a)[1]<-colnames(my_contributions()) ## fix colnames when there is only one sample if (length(my.sel.cancers)==1) colnames(a)[length(colnames(a))]<-my.sel.cancers ## fix colnames when there is only one cancer type - - for (i in 1:(ncol(a)-length(my.sel.cancers))) { + + for (i in 1:(ncol(a)-length(my.sel.cancers))) { #a[,i]<-a[,i]/max(a[,i]) # don't do a rescaling a[,i]<-a[,i]/sum(a[,i]) # put the proportions } - for (i in (ncol(a)-length(my.sel.cancers)+1):ncol(a)) { + for (i in (ncol(a)-length(my.sel.cancers)+1):ncol(a)) { a[,i]<-a[,i]*2.5 # put the proportions # 1 goes to 2.5 (light blue) } - rownames(a)<-colnames(cancer_signatures)[1:30] + rownames(a)<-colnames(cancer_signatures)[1:30] colorends <- c("white","red", "white", "blue") dendro <- "none" if (input$row_c_heatmap=="yes") dendro<-"row" - if (input$col_c_heatmap=="yes") dendro<-"column" + if (input$col_c_heatmap=="yes") dendro<-"column" if (input$row_c_heatmap=="yes" & input$col_c_heatmap=="yes") dendro<-"both" if (input$samplenames==FALSE){ colnames(a)<-1:length(colnames(a)) } - + heatmaply(a, scale_fill_gradient_fun = scale_fill_gradientn(colours = colorends, limits = c(0,3)), dendrogram = dendro, k_row = 1, k_col = 1, column_text_angle = 90, hide_colorbar = TRUE, distfun = 'pearson') - + }) - - # Download HeatMap + + # Download HeatMap output$download_known_plot <- downloadHandler(filename = function(){paste("comparison_with_cancers",input$type_known_plot, sep=".")}, content=function (ff) { - - + + if ("All cancers" %in% input$mycancers) my.sel.cancers<-colnames(known_cancer_signatures) else my.sel.cancers<-intersect(input$mycancers,colnames(known_cancer_signatures)) - - + + a<-data.frame(my_contributions()[1:30,], known_cancer_signatures[1:30,my.sel.cancers]) rownames(a)<-colnames(cancer_signatures)[1:30] if (ncol(my_contributions())==1) colnames(a)[1]<-colnames(my_contributions()) ## fix colnames when there is only one sample if (length(my.sel.cancers)==1) colnames(a)[length(colnames(a))]<-my.sel.cancers ## fix colnames when there is only one cancer type - - for (i in 1:(ncol(a)-length(my.sel.cancers))) { + + for (i in 1:(ncol(a)-length(my.sel.cancers))) { #a[,i]<-a[,i]/max(a[,i]) # don't do a rescaling a[,i]<-a[,i]/sum(a[,i]) # put the proportions } - for (i in (ncol(a)-length(my.sel.cancers)+1):ncol(a)) { + for (i in (ncol(a)-length(my.sel.cancers)+1):ncol(a)) { a[,i]<-a[,i]+1.5 # put the proportions # add 1.5 to cancers } - - rownames(a)<-colnames(cancer_signatures)[1:30] + + rownames(a)<-colnames(cancer_signatures)[1:30] colorends <- c("white","red", "white", "blue") dendro <- "none" if (input$row_c_heatmap=="yes") dendro<-"row" - if (input$col_c_heatmap=="yes") dendro<-"column" + if (input$col_c_heatmap=="yes") dendro<-"column" if (input$row_c_heatmap=="yes" & input$col_c_heatmap=="yes") dendro<-"both" - + if (input$samplenames==FALSE){ colnames(a)<-1:length(colnames(a)) } - + heatmaply(a, scale_fill_gradient_fun = scale_fill_gradientn(colours = colorends, limits = c(0,3)), dendrogram = dendro, k_row = 1, k_col = 1, column_text_angle = 90, hide_colorbar = TRUE, distfun = 'pearson', file = ff) - + }) - - - + + + ####################################### ###### PCA - Clustering of samples ## only if there are 3 or more samples ####################################### output$pca_plot <- renderPlot({ - + #Error management validate( need((length(input$mysamp)>2 | "All samples" %in% input$mysamp ),"PCA analysis works only with 3 or more samples."),errorClass = "pca" ) - - + + ####################################### my_contributions_mod <- my_contributions() ####################################### - + #Error management validate( need((length(colnames(my_contributions_mod))>2),"PCA analysis works only with 3 or more samples."),errorClass = "pca" @@ -1025,17 +1035,17 @@ shinyServer(function(input, output,session){ if (ncol(as.data.frame(my_contributions_mod))>=3) { a<-t(as.data.frame(my_contributions_mod[30:1,])) - for (i in 1:nrow(a)) { + for (i in 1:nrow(a)) { a[i,]<-a[i,]/sum(a[i,]) # put the proportions } a<-a[,which(apply(a,2,sd)>0)]# remove signatures without variation - + samplesnames<-rownames(a) rownames(a)<-1:(length(rownames(a))) - + pca <- prcomp(a, scale=T) plot(pca$x[,1], pca$x[,2], # x y and z axis - col="red", pch=19, + col="red", pch=19, xlab=paste("Comp 1: ",round(pca$sdev[1]^2/sum(pca$sdev^2)*100,1),"%",sep=""), ylab=paste("Comp 2: ",round(pca$sdev[2]^2/sum(pca$sdev^2)*100,1),"%",sep=""), xlim=c(min(pca$x[,1])-0.5*( max(pca$x[,1])-min(pca$x[,1]) ) ,max(pca$x[,1])+0.5*( max(pca$x[,1])-min(pca$x[,1]) ) ), @@ -1043,106 +1053,106 @@ shinyServer(function(input, output,session){ main="PCA") text(pca$x[,1], pca$x[,2]-0.15, rownames(a)) - + } else { par(mar = c(0,0,0,0)) plot(c(0, 1), c(0, 1), ann = F, bty = 'n', type = 'n', xaxt = 'n', yaxt = 'n') - text(x = 0.5, y = 0.5, paste("PCA analysis works only with >=3 samples"), + text(x = 0.5, y = 0.5, paste("PCA analysis works only with >=3 samples"), cex = 1.6, col = "black") } }) - - + + output$pca_plot_table <- renderTable({ - + my_contributions_mod <- my_contributions() - - + + if (ncol(as.data.frame(my_contributions_mod))>=3) { a<-t(as.data.frame(my_contributions_mod[30:1,])) - for (i in 1:nrow(a)) { + for (i in 1:nrow(a)) { a[i,]<-a[i,]/sum(a[i,]) # put the proportions } a<-a[,which(apply(a,2,sd)>0)]# remove signatures without variation - + samplesnames<-rownames(a) rownames(a)<-1:(length(rownames(a))) - + data.frame(ID=rownames(a),Sample=samplesnames) - - + + } - - + + }) - - - - + + + + output$download_pca_plot <- downloadHandler ( - filename = function(){paste("pca_plot",input$type_pca_plot, sep=".")}, + filename = function(){paste("pca_plot",input$type_pca_plot, sep=".")}, content = function(ff) { if (input$type_pca_plot=="pdf") pdf(ff,height=7,width=7) if (input$type_pca_plot=="png") png(ff,height=7*ppi,width=7*ppi,res=ppi) if (input$type_pca_plot=="tiff") tiff(ff,height=7*ppi,width=7*ppi,res=ppi,compression="lzw") - + ####################################### my_contributions_mod <- my_contributions() ####################################### - + if (ncol(as.data.frame(my_contributions_mod))>=3) { a<-t(as.data.frame(my_contributions_mod[30:1,])) - for (i in 1:nrow(a)) { + for (i in 1:nrow(a)) { a[i,]<-a[i,]/sum(a[i,]) # put the proportions } a<-a[,which(apply(a,2,sd)>0)]# remove signatures without variation - + samplesnames<-rownames(a) rownames(a)<-1:(length(rownames(a))) - + pca <- prcomp(a, scale=T) plot(pca$x[,1], pca$x[,2], # x y and z axis - col="red", pch=19, + col="red", pch=19, xlab=paste("Comp 1: ",round(pca$sdev[1]^2/sum(pca$sdev^2)*100,1),"%",sep=""), ylab=paste("Comp 2: ",round(pca$sdev[2]^2/sum(pca$sdev^2)*100,1),"%",sep=""), xlim=c(min(pca$x[,1])-0.5*( max(pca$x[,1])-min(pca$x[,1]) ) ,max(pca$x[,1])+0.5*( max(pca$x[,1])-min(pca$x[,1]) ) ), ylim=c(min(pca$x[,2])-0.5*( max(pca$x[,2])-min(pca$x[,2]) ) ,max(pca$x[,2])+0.5*( max(pca$x[,2])-min(pca$x[,2]) ) ), main="PCA") text(pca$x[,1], pca$x[,2]-0.25, rownames(a)) - - + + } else { par(mar = c(0,0,0,0)) plot(c(0, 1), c(0, 1), ann = F, bty = 'n', type = 'n', xaxt = 'n', yaxt = 'n') - text(x = 0.5, y = 0.5, paste("PCA analysis works only with >=3 samples"), + text(x = 0.5, y = 0.5, paste("PCA analysis works only with >=3 samples"), cex = 1.6, col = "black") } dev.off() - + }) - + output$download_pca_table <- downloadHandler(filename="PCA.txt", content=function (file){ my_contributions_mod <- my_contributions() - + if (ncol(as.data.frame(my_contributions_mod))>=3) { a<-t(as.data.frame(my_contributions_mod[30:1,])) - for (i in 1:nrow(a)) { + for (i in 1:nrow(a)) { a[i,]<-a[i,]/sum(a[i,]) # put the proportions } a<-a[,which(apply(a,2,sd)>0)]# remove signatures without variation - + samplesnames<-rownames(a) rownames(a)<-1:(length(rownames(a))) - + write.table(x = data.frame(ID=rownames(a),Sample=samplesnames), file = file, sep="\t",quote=F,row.names=F) } }) - - + + })# observeEvent(input$run) })