-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnotesonCompScipaper.nb
6236 lines (6113 loc) · 298 KB
/
notesonCompScipaper.nb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 10.1' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 158, 7]
NotebookDataLength[ 305455, 6227]
NotebookOptionsPosition[ 301024, 6089]
NotebookOutlinePosition[ 301359, 6104]
CellTagsIndexPosition[ 301316, 6101]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[BoxData[
RowBox[{"ClearAll", "[", "\"\<Global`*\>\"", "]"}]], "Input",
CellChangeTimes->{{3.6421782055259733`*^9, 3.642178220634665*^9}}],
Cell[CellGroupData[{
Cell["Notes on J. of Comp. Phys. 228 (2009) 8712\[Dash]8725", "Title",
CellChangeTimes->{{3.642179539214714*^9, 3.6421795606964893`*^9}}],
Cell[CellGroupData[{
Cell["Preliminaries", "Section",
CellChangeTimes->{{3.642179563906163*^9, 3.642179575419971*^9}}],
Cell[TextData[{
"We start by considering sums of the form:\n",
Cell[BoxData[
FormBox[
RowBox[{"f", "(",
SubscriptBox["x", "i"]}], TraditionalForm]],
FormatType->"TraditionalForm"],
") = ",
Cell[BoxData[
FormBox[
RowBox[{
RowBox[{
RowBox[{
RowBox[{
UnderoverscriptBox["\[Sum]",
RowBox[{"j", "=", "1"}], "N"],
RowBox[{"K", "(",
SubscriptBox["x", "i"]}]}], ",",
SubscriptBox["y", "j"]}], ")"}],
SubscriptBox["\[Sigma]", "j"]}], TraditionalForm]],
FormatType->"TraditionalForm"],
" for i = 1, ..., N\nin ",
StyleBox["Mathematica",
FontSlant->"Italic"],
", we can write this as"
}], "Text",
CellChangeTimes->{{3.642177654714695*^9, 3.642177719795155*^9}}],
Cell[BoxData[
RowBox[{
RowBox[{
RowBox[{"f", "[",
RowBox[{"xi_", ",", "N0_"}], "]"}], ":=",
RowBox[{
UnderoverscriptBox["\[Sum]",
RowBox[{"j", "=", "1"}], "N0"],
RowBox[{
RowBox[{"Ke", "[",
RowBox[{"xi", ",",
RowBox[{"y", "[", "j", "]"}]}], "]"}],
RowBox[{"\[Sigma]", "[", "j", "]"}]}]}]}], ";",
RowBox[{"(*",
RowBox[{
RowBox[{"example", " ", "for", " ", "N0"}], " ", "=", " ", "5"}], "*)"}],
" ",
RowBox[{"f", "[",
RowBox[{"xi", ",", "5"}], "]"}], ";"}]], "Input",
CellChangeTimes->{{3.64217772167369*^9, 3.6421778079576607`*^9}, {
3.642178062894092*^9, 3.642178113929916*^9}}],
Cell[TextData[{
"for some observation points xi = ",
Cell[BoxData[
FormBox[
SubscriptBox["x", "i"], TraditionalForm]],
FormatType->"TraditionalForm"],
"=x[i] and source points ",
Cell[BoxData[
FormBox[
SubscriptBox["\[Sigma]", "j"], TraditionalForm]],
FormatType->"TraditionalForm"],
"= \[Sigma][j]. The kernel is denoted by Ke. We implement a low-rank \
approximation to the kernel as"
}], "Text",
CellChangeTimes->{{3.6421778245965433`*^9, 3.642177863639998*^9}, {
3.642177922248871*^9, 3.642177934136787*^9}}],
Cell[BoxData[
RowBox[{
RowBox[{
RowBox[{"LowRankKe", "[",
RowBox[{"x_", ",", "y_", ",", "n_"}], "]"}], ":=",
RowBox[{
UnderoverscriptBox["\[Sum]",
RowBox[{"l", "=", "1"}], "n"],
RowBox[{
RowBox[{"u", "[",
RowBox[{"l", ",", "x"}], "]"}],
RowBox[{"\[Nu]", "[",
RowBox[{"l", ",", "y"}], "]"}]}]}]}], ";",
RowBox[{"(*",
RowBox[{
RowBox[{"example", " ", "for", " ", "n"}], " ", "=", " ", "3"}], "*)"}],
RowBox[{"LowRankKe", "[",
RowBox[{"x", ",", "y", ",", "3"}], "]"}], ";"}]], "Input",
CellChangeTimes->{{3.642177937541174*^9, 3.6421779654792547`*^9}, {
3.6421780097435093`*^9, 3.6421780588480787`*^9}, {3.642178118766315*^9,
3.642178122724346*^9}, {3.642178273621438*^9, 3.6421782946789217`*^9}}],
Cell["\<\
Substitution of the above equation into our first equation, yields\
\>", "Text",
CellChangeTimes->{{3.64217798489246*^9, 3.642177997443727*^9}}],
Cell[BoxData[
RowBox[{
RowBox[{"LowRankf", "[",
RowBox[{"xi_", ",", "n_", ",", "N0_"}], "]"}], ":=",
RowBox[{
UnderoverscriptBox["\[Sum]",
RowBox[{"l", "=", "1"}], "n"],
RowBox[{
UnderoverscriptBox["\[Sum]",
RowBox[{"j", "=", "1"}], "N0"],
RowBox[{
RowBox[{"u", "[",
RowBox[{"l", ",", "xi"}], "]"}],
RowBox[{"\[Nu]", "[",
RowBox[{"l", ",",
RowBox[{"y", "[", "j", "]"}]}], "]"}],
RowBox[{"\[Sigma]", "[", "j", "]"}]}]}]}]}]], "Input",
CellChangeTimes->{{3.642177999388433*^9, 3.642178001647852*^9}, {
3.642178128318385*^9, 3.642178202175187*^9}}],
Cell["\<\
To implement the above equation, we need to first transform our source \
functions\
\>", "Text",
CellChangeTimes->{{3.642178303827764*^9, 3.6421783408829412`*^9}}],
Cell[BoxData[
RowBox[{
RowBox[{"W", "[",
RowBox[{"l_", ",", "N0_"}], "]"}], ":=",
RowBox[{
UnderoverscriptBox["\[Sum]",
RowBox[{"j", "=", "1"}], "N0"],
RowBox[{
RowBox[{"\[Nu]", "[",
RowBox[{"l", ",",
RowBox[{"y", "[", "j", "]"}]}], "]"}],
RowBox[{"\[Sigma]", "[", "j", "]"}]}]}]}]], "Input",
CellChangeTimes->{{3.6421783449331217`*^9, 3.642178370641346*^9}, {
3.6421784196803513`*^9, 3.6421784216338577`*^9}}],
Cell["\<\
Next, we compute our low rank f(x) at each observation point with our \
transformed source\
\>", "Text",
CellChangeTimes->{{3.64217839645324*^9, 3.642178411068244*^9}}],
Cell[BoxData[
RowBox[{
RowBox[{"TransformedLowRankf", "[",
RowBox[{"xi_", ",", "n_", ",", "N0_"}], "]"}], ":=",
RowBox[{"Sum", "[",
RowBox[{
RowBox[{
RowBox[{"u", "[",
RowBox[{"l", ",", "xi"}], "]"}], "*",
RowBox[{"W", "[",
RowBox[{"l", ",", "N0"}], "]"}]}], ",",
RowBox[{"{",
RowBox[{"l", ",", "1", ",", "n"}], "}"}]}], "]"}]}]], "Input",
CellChangeTimes->{{3.642178426871674*^9, 3.6421784741338797`*^9}}],
Cell[TextData[{
"Consider a function g(x) on a closed interval [-1,1]. This function could \
be ",
Cell[BoxData[
FormBox[
SuperscriptBox["x", "2"], TraditionalForm]],
FormatType->"TraditionalForm"],
", Cos[x], 5x, ect. An n-point interpolant that approximates g(x) can be \
expressed as"
}], "Text",
CellChangeTimes->{{3.642178582842255*^9, 3.642178640441551*^9}}],
Cell[BoxData[
RowBox[{
RowBox[{"p", "[",
RowBox[{"n_", ",", "x_"}], "]"}], ":=",
RowBox[{"Sum", "[",
RowBox[{
RowBox[{
RowBox[{"g", "[",
RowBox[{"x", "[", "l", "]"}], "]"}],
RowBox[{"w", "[",
RowBox[{"l", ",", "x"}], "]"}]}], ",",
RowBox[{"{",
RowBox[{"l", ",", "1", ",", "n"}], "}"}]}], "]"}]}]], "Input",
CellChangeTimes->{{3.642178643613901*^9, 3.642178680570219*^9}, {
3.642178712522724*^9, 3.642178713171719*^9}}],
Cell[TextData[{
"for example, 4-point interpolation of ",
Cell[BoxData[
FormBox[
SuperscriptBox["x", "2"], TraditionalForm]],
FormatType->"TraditionalForm"],
" with weighting functions ",
Cell[BoxData[
FormBox[
SubscriptBox["w", "l"], TraditionalForm]],
FormatType->"TraditionalForm"],
":"
}], "Text",
CellChangeTimes->{{3.642178725263476*^9, 3.642178734226882*^9}, {
3.642178774778956*^9, 3.642178784712226*^9}}],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{
RowBox[{"g", "[", "x_", "]"}], ":=",
SuperscriptBox["x", "2"]}], ";",
RowBox[{"p", "[",
RowBox[{"4", ",", "x"}], "]"}]}]], "Input",
CellChangeTimes->{{3.6421786845547457`*^9, 3.642178706510738*^9}}],
Cell[BoxData[
RowBox[{
RowBox[{
RowBox[{"w", "[",
RowBox[{"1", ",", "x"}], "]"}], " ",
SuperscriptBox[
RowBox[{"x", "[", "1", "]"}], "2"]}], "+",
RowBox[{
RowBox[{"w", "[",
RowBox[{"2", ",", "x"}], "]"}], " ",
SuperscriptBox[
RowBox[{"x", "[", "2", "]"}], "2"]}], "+",
RowBox[{
RowBox[{"w", "[",
RowBox[{"3", ",", "x"}], "]"}], " ",
SuperscriptBox[
RowBox[{"x", "[", "3", "]"}], "2"]}], "+",
RowBox[{
RowBox[{"w", "[",
RowBox[{"4", ",", "x"}], "]"}], " ",
SuperscriptBox[
RowBox[{"x", "[", "4", "]"}], "2"]}]}]], "Output",
CellChangeTimes->{{3.642178687855994*^9, 3.642178714407566*^9}}]
}, Open ]],
Cell["\<\
Now we can approximate the kernel with the above interpolation formula. First \
fix the variable y and treat the kernel as a function of x\
\>", "Text",
CellChangeTimes->{{3.642178816515574*^9, 3.642178838062359*^9}, {
3.6421789108582573`*^9, 3.6421789133157463`*^9}}],
Cell[BoxData[
RowBox[{
RowBox[{
RowBox[{"Ker", "[",
RowBox[{"x_", ",", "y_", ",", "n_"}], "]"}], ":=",
RowBox[{"Sum", "[",
RowBox[{
RowBox[{
RowBox[{"Ke", "[",
RowBox[{
RowBox[{"x", "[", "l", "]"}], ",", "y"}], "]"}],
RowBox[{"w", "[",
RowBox[{"l", ",", "x"}], "]"}]}], ",",
RowBox[{"{",
RowBox[{"l", ",", "1", ",", "n"}], "}"}]}], "]"}]}], ";", " ",
RowBox[{"ClearAll", "[", "Ker", "]"}], ";"}]], "Input",
CellChangeTimes->{{3.642178840675132*^9, 3.6421788823082237`*^9}, {
3.64217894121275*^9, 3.6421789461201763`*^9}}],
Cell["We then use the interpolation formula again to get", "Text",
CellChangeTimes->{{3.642178919306505*^9, 3.642178930430706*^9}}],
Cell[BoxData[
RowBox[{
RowBox[{"Ker", "[",
RowBox[{"x_", ",", "y_", ",", "n_"}], "]"}], ":=",
RowBox[{"Sum", "[",
RowBox[{
RowBox[{"Sum", "[",
RowBox[{
RowBox[{
RowBox[{"Ke", "[",
RowBox[{
RowBox[{"x", "[", "l", "]"}], ",",
RowBox[{"y", "[", "m", "]"}]}], "]"}],
RowBox[{"w", "[",
RowBox[{"l", ",", "x"}], "]"}],
RowBox[{"w", "[",
RowBox[{"m", ",", "y"}], "]"}]}], ",",
RowBox[{"{",
RowBox[{"l", ",", "1", ",", "n"}], "}"}]}], "]"}], ",",
RowBox[{"{",
RowBox[{"m", ",", "1", ",", "n"}], "}"}]}], "]"}]}]], "Input",
CellChangeTimes->{{3.6421789319199467`*^9, 3.642178992683441*^9}}],
Cell[TextData[{
"This can indeed be checked again to verify that it is a low-rank \
representation of the kernel K(x,y) with\n",
Cell[BoxData[
FormBox[
SubscriptBox["u", "l"], TraditionalForm]],
FormatType->"TraditionalForm"],
"(x) = ",
Cell[BoxData[
FormBox[
SubscriptBox["w", "l"], TraditionalForm]],
FormatType->"TraditionalForm"],
"(x) and ",
Cell[BoxData[
FormBox[
SubscriptBox["\[Nu]", "l"], TraditionalForm]],
FormatType->"TraditionalForm"],
"(y) = Sum[K(x[l],y[m]),{m,1,n}]. Note that any interpolation scheme can be \
used to construct a low-rank approximation, we can turn to the Chebyshev \
polynomials. They will serve as the interpolation basis with their roots as \
the interpolation nodes. ",
StyleBox["Mathematica",
FontSlant->"Italic"],
" implements the Chebyshev polynomials as ChebyshevT[n,x] (first-kind and \
order n), ie"
}], "Text",
CellChangeTimes->{{3.642179003738039*^9, 3.642179158859456*^9}, {
3.642179198014583*^9, 3.6421792199768257`*^9}}],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"ChebyshevT", "[",
RowBox[{"2", ",", "x"}], "]"}]], "Input",
CellChangeTimes->{{3.642179162252542*^9, 3.642179175146467*^9}}],
Cell[BoxData[
RowBox[{
RowBox[{"-", "1"}], "+",
RowBox[{"2", " ",
SuperscriptBox["x", "2"]}]}]], "Output",
CellChangeTimes->{{3.642179167024432*^9, 3.64217917553016*^9}}]
}, Open ]],
Cell[TextData[{
"Note that the domain of ChebyshevT[n,x] for x = Cos[\[Theta]], \[Theta] \
\[Element] [0,2\[Pi]] is closed on ",
Cell[BoxData[
FormBox[
SubscriptBox["T", "n"], TraditionalForm]],
FormatType->"TraditionalForm"],
"[x] \[Element] [-1,1]:"
}], "Text",
CellChangeTimes->{{3.6421792328106823`*^9, 3.642179293062112*^9}, {
3.642179330547748*^9, 3.642179336085803*^9}}],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"ChebyshevT", "[",
RowBox[{"1", ",",
RowBox[{"Cos", "[", "\[Theta]", "]"}]}], "]"}], ",",
RowBox[{"ChebyshevT", "[",
RowBox[{"2", ",",
RowBox[{"Cos", "[", "\[Theta]", "]"}]}], "]"}], ",",
RowBox[{"ChebyshevT", "[",
RowBox[{"3", ",",
RowBox[{"Cos", "[", "\[Theta]", "]"}]}], "]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"\[Theta]", ",",
RowBox[{
RowBox[{"-", "2"}], "\[Pi]"}], ",",
RowBox[{"2", "\[Pi]"}]}], "}"}], ",",
RowBox[{"PlotLegends", "\[Rule]", "\"\<Expressions\>\""}], ",",
RowBox[{"PlotStyle", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"Blue", ",",
RowBox[{"Dashing", "[", "Tiny", "]"}], ",",
RowBox[{"Thickness", "[", "0.0025", "]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"Blue", ",",
RowBox[{"Dashing", "[", "Large", "]"}], ",",
RowBox[{"Thickness", "[", "0.0025", "]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"Blue", ",",
RowBox[{"Thickness", "[", "0.0025", "]"}]}], "}"}]}], "}"}]}], ",",
RowBox[{"Frame", "\[Rule]", "True"}]}], "]"}]], "Input",
CellChangeTimes->{{3.64217925097469*^9, 3.642179263319672*^9}, {
3.6421792948484364`*^9, 3.642179313111794*^9}, {3.642180157968636*^9,
3.642180228929058*^9}}],
Cell[BoxData[
TemplateBox[{GraphicsBox[{{{}, {}, {
Directive[
Opacity[1.],
AbsoluteThickness[1.6],
RGBColor[0, 0, 1],
Dashing[Tiny],
Thickness[0.0025]],
LineBox[CompressedData["
1:eJw1mnk0Vd///833XvN8L0k0qFBpLsnelZQyhUSTIUlFKUPeEiVRodIgmaMS
SkQI2ZtMZZ7neebeuxGFxPd+1vr9zh/3rMdad539ej5fwzn7rKNse9XkPA8X
F1cc5+d/5yN6ogf+KsvhlsUlzkGAzEWfCaqiHBbrWe84weGe+xNRsvJyeMvZ
krQCDn94b3N0tawc3vabp9aFwzfK6mY3S8rhHzfUfgpweP/IgXdAVA4r8ydF
eS4SIEr9YmogKIc9JSn61f8IaF2rwn1KQA7HnR9t5OPwm0MvUxx45LCxjKzW
sgUCrl6gnnZfZOAL9519JP8SoBnwH81vnoFl3eZjx+YIEEgYywz5zcDd3fWv
42cJqC05ZRczxcDe8nvu7v1DQORQhcRHNgNnFAbpZs8Q4CCgjXLGGHgKH2BJ
TROweFBJvqmPgecr7cadJgj4cT6ktL+LgUNkTus6sgl4fo/HbbKNgY8p1wce
ZRKgVjxQLVzPwI86E7o+DBPwe+D4LflqBq5v8ZvYOEhAIV+p6rpyBnZb3zMT
0keAhU7ivQPfGZg9enpwvoOAVXbyW48hBr7jTBq42ghg3w3sOZvLwJGufYXD
TQTc++60xzOdgZfvYbyzqCHg8/4tk6nxDDwRFTNYUkDALdv46PwYBl4VCFY1
fiPgsK+0fkUER9+hD55FXwnoLvj9bvgZAx+53OWvm0aA8L7c04p+DFz9tflh
SzQBzdbqguq3GTi3dq/wxCsC4m5HZe32YuCZ3zY/R54TsBv7SB53ZeCxnFBx
74cE2AOdskA7BhbUWX58lysBm62+uL2y5vizTET/5BUCFrxVViWcZuD4xHVJ
ZxwIeJZP9S40Y+Bd94zTqacJwHsrt87pMPBadn/8xD4ClmmZx9ivYeDHfa7p
IlQCzjmrHluhzMA6jY0usUtskPxmkadFgYH50ifyxP6wwR6RBHs9aQamhH0S
9xtkg1Ndfzao8zKw5t6PbUWYDSJuv8qb7KFjj93dVqnObNCf4XQlqYOOVZLV
IsXt2UBtdJ/SuRY67jvWL254ig1yj43dbaim443C8w3WB9mgfeWeo1n5dMw9
vUd1mM4Gy4o7Wr0i6fj5N+to30wWODeXGrg9jI5TclVv5SWyQPKGe3vZz+hY
V63lckMkC+wJ3fDaKpCOFyRlMqJ9WeDUBW+H/Z50fG9U6mW0PgtE0JT+UCzo
WNLW4IxlGxMsMzwn/UyKjsVW33XQ6BwHYfdzTj0Xo+MdYiYnLleOA9nvEvEv
hOg48P7Nhw+/jQPxXXhzGC8d77U0++cWNQ4EVi43ivoli7ulrZp5To+DiZmm
Bwn1sjjW/FUZT8MYKIk6spT7TBZXrQm8K506CnRaXut+eyyL+cyO5M5GjoIC
ybng/EBZ7G/vbP/9wSjIC0hQKLgrizc3p5wTPjcK0q7xaZa4yOIpyifGVelR
EHkw37XGVBZ/FezPuH99BFxnbR4bkJLF5iE7eSMVhsHTTvN982Ky2PGjvsKg
wDD4XHkzTExYFjugOGXG5BCY/Fisq8kniydnC3S0ioeA8xXL+MfTMrjxy449
Po5D4Cq5fVqzUQaf9joXy5M1CBwnq6seh8rgbFX7ja+0BoD9jFO6ppwMNkvY
c0NKrBfcV7j64hhNGldX96kbZNYB7trNLcFCUni2Z3mfokAieP/m69bAWQm8
/0r7b4eBcsTqSfENGhPH91Tcb4D8TiSd57Q8akgcR71xXZyY6USaL9WzP/aJ
Y9yz1//ehi7kb5DEqmoTx7tfKBeYR3YhpZy3FhLl4vip6RL1uUc3MnsWuTE0
WRznWT9Pf/uiB+UefNgW4yiOu5pS+ldo9aE+JT23VAdxfDxcP2vmeB+iLlDE
C+zE8dKt6fKvV/uQ2ed7B/tOi2MVywwz4fg+xFa8k7raQByfjVrY0ELtRytn
b/gnbhDHfKaDD2Zq+pHU8XI7+04xLJE9NRNtMohObhOL72wQw2e0RWUojoMo
Vsq016xCDLvdOFJvfm8Qqde1nTmQK4b926k5H7IGka7RmLnSKzG8SmdWfNOy
IeShR9NrMxPDKSBJx61zCHXuPbTBsEIUfxWfyz9sOIJWLw+8XPxdFIfsfKx0
1W4EXVqoStTKFcVz75joP88R9DvHXEUtSRT/TCg13fNuBInvsl9BvS+KR17f
lHNaGEH7t9yTKDwgirvWG9W5xY+iBJXvM9tzRXB5uKO1R/sYspAUsdJOF8Ee
UWHh+cwxJLhoXqabLIK3fbivNPZvDDk2joWfiBDBI/fTyidWjCMNP0n4300R
3M3dW5ZjO46ye20e5u0Rweo7nvBt7R9HFyuTfxVtFcF9Pzl1OzWO5L/OnK5U
E8He+FTWXh4m8nryYFPXMhF8CDjrtyoxEQRpDUt/hXF2xX+7C04zUVkk14oD
ecI4xNpN51A1R+P9I/ePZgjjesFfvIxOJlJ1fT5p+kEYR9BZKyvGmCjo6Loi
u0hhfP2kjF4XPwsZzxtd9PcSxhXnk/F7TRZqORGT/kNLGH8zixEtj2ahBwdG
Feq2CWMNC/+35UkspLlpq3+bujBubB6sTslkoUiBUotxBWE8/Z4nVaGKhay/
sP8J/xPCMVd+nHzxl4VGJbUPG38Twm898uMnjNmo++Kq2ttfhPAw9LbpO8lG
jZh6Mu2jED6oZqKRZcdGBVfqL0tGC+H1+k3tNA82evXT4XGDtxA2P5R7ySSK
jfR8nzVZQCGs/fd8iUMfG4FWD6sHu4TwZH6QU8AYG23XODvyVUMIr2N1RN6f
YiPlrnXz8spCeF/dE7ctPATN7c5f3skthI1qQ+AqJYISJ0fsbL4LYrGwqVUu
5gTFHK5iheQKYqZD7Z/M0wS9iEl3L0wXxAd28A532BJ0x8D7/qo3gjjSUYir
+gpBlolSHwb9BPHltiifo/cIMuKa2yZ7SxDb1mg9iXlI0METXd903QSxW7Tj
k8bHBG3mT6xOOC+I35/8dnT4FUE0G+1fF3UF8RGopPr6A0FLWau8wrUFsexF
zy18aQTNiNL4y3cI4mUrKvn1vhDUm1cvq75WEItf2/LvxjeCmqW+xpxeIYhT
t3nI2RYQVHkpel0wXRCf6FCY3FBM0FfGRU02RRCnOagUXaog6NNVw++KXIJY
bv/b7PZqgt6WbNU3mqXhByTz5MZ6gkJcF8+kjtCw6j2+CI9WggLK+4d6emhY
P2zfVucOgm6t/HFVopWGxdulnPS6CbpY8+zO9R80bBGRnRM7QJCFMZCawzSc
kfwgxnSYoMM1Y298smn4slFVVt8oQTuNQ3cIpNJw5rUELkMmQSo1+8qCEmg4
UP3sjRdsgmSNWZZSMTScVn5O7usEQfw1YeOvQmn4ZfWxgewpggaqiWjCPRrO
VpRl6v8mqMEoInbDLRq+92Bkde8fgr5X627JcKXhnMgI72NzBH02mvqu6UjD
//ie/omaJyiuOup4wTkaXpVm/qjkL0FPjfSGD52i4ab6yH3lC5z8Vk97VJnQ
MM8gEP/wjyBno1jB40doWCX+wJzDIkHW1Ucj2/dx9Eg3/OVeIsjY6M8G2900
/CTgIP0Gh0F1HBrRoOFPz6WPlnF4o5HhsavraLhy+VDoDIcVq+f6ZlbQsI5R
wPwih0WM3rp60Wl4JoblNsDhhSpjAV4xGj5Tu4P2jsNMw4WXDwRo2Im8zzjA
4faqhPXii1S81/izxzdOPD8NTXNDZ6j46bPR41Iczqla1F/OouKtcSIGBznx
JxomdcUPULHkR34rU46+sKrjzqodVGyg3hu0l6P/viE3T1o9Ff/pbG7m5fhz
o+rDs53lVIyL9Pa9myXI3tBiTX4hFduroJ+rOf6aV/Fm6eRQMffDETefGYJ0
DT8dLk+jYtnMaJ3MXwRtrzrZdiyRih+n9O36MUnQakMBx5ZYKnb53GmWTQiS
rkr7dzaMim/t7g2/yyKIz/DM48HHVHx70l5EbZygX5VUZccAKo7LFf+UMkJQ
XaWVzn/uVBwypxR4pJ+gQgOhpiUnKq6Sfl5u20NQWmXmBf/zVAwe6hw60UnQ
k0qRwGdmnHgvaSw2NBFkUJlb+3ELFbtvzK9fVUaQlsGFc9tUqfjgtmBzxSKC
1CslZ3KUqTjm1bFtM4ggwcqLjDJxKi7WfCy1K4ugsgq6VR+bgi1OOLIk3xCU
rf99wmGIgoPST9dPRBOUUHHFl3RSsKfA/N5kTj/7VxS/XaigYNNa4a9fHhGk
U+HClE2m4HXWizPKNwiKtliTuDGegh973k02vkbQ7EDTed0ICk68qJVofZmg
D/92d7sFUvDLpIjnq60IktnEVddwmYLv8rQ3aB3k1GNu2iPmOQo2q/7j6q7N
yf+hc0f5TlPw1ajfj0J2EuRtXVK0VZ+Cacz3Rx3XEzQUEpT1VJ2CJxR/JmcI
EQQVtV2TVlOwXq1Y1zwvQeFJRKNQgbOe8MnvKxfYyPC7SdKkMAXXzeNiOpON
sqYZUcYsAWyrmhbw8icb3T/x1lc0RQCfqrtpNHOHjfr6zYHKOwEsjpY/PMmZ
11rO1IW90QL4SKY6V9wVNpq4f9nN6ZEANg5KLmrmzHvLnM0OFVcEcM7P3bh7
MxupLs83eLhJAJv9/OFwqY2FKvuaGAJp/DjuUUVYlgwLKYUZdrm858eLvCub
TlJYyNWgJL43hh/TRigFHbNMpJD9ZeO3R/z43YkdfV7tTHQp+LmOqyM/XjOh
v0EjhokEdpk4963lx9XtolrXOfdPEFxZmh/Nhy99u/x0SHAcPd1/MFg9lA8/
1v3xwnd2DA39yTMJD+bDKZWe8UuDY+iR7YdONy8+fObFwpYoPIY6dgb+Uj/J
h/dmrvd2cB1DHn2HV0TI8OHBkecypk2jKG1nkfuNIF68wexhm5zfCDpi0XxK
xI8XBxVwR126MoL6PMZg/E1e/Kdhm0WsxQiSzhEXqr7Ei5dlWMjlqo8gd60z
MSp6vHjKr9c5tX4Yae77XdrIz4vffXi1NlVhGBUeWSe3zYcH24afV82KGER1
Z4JyJ65x45pdB7NaTPtQ48O35fRL3LhBIvOTtGYfasnKb9e25caJX6wVgVIf
6paY/Btkwo2XtfUVWDF7EbP4uNb6rdzYPeBbZ93dXiSwccU3m2kuvPDyvU/o
px6kuZiWX+fOhc+MF+NHvzvR/r2f7l78s4h+WE8xtOuaUOiek79mvsyjwbHV
LzW2f0WHrgoN0b/9RqlynxobpL+DlBW1e7SvTiFBI51Vp/jawLywlfSJs1Mo
SSLvpuT+NnBwnsm8ajCFaBoC/h982kBHAzX6tdoUsq/cHBUw3wYEH0Iu/pFJ
NJ4rYVnHbgf205+Kyq0nUZdc5hPv2k6g+OORgaXJBIoSXWhNye8BioNh+SOX
mKi/YuRAoMYAsJ6sWGZ1lIlSfpFjc4cHQNw/rv8a1ZiIb/N8sqnNAFCRvbi1
kDmOlLYHD1aEDICNh3a/j7gyjmwEFTqrJgfA3sTWEMPrYyghKy5k4eMgOO0k
fz7jvxE03TFcbS07DKL/MyxUPTmCuo+nCKqrD4Oee74rXmuOoEMGnt979g0D
u+ix1uC/w8jHrf+kgNMwuFydY3jh1jDaLCHRAgqHgefmU7vk7wyhuv/iRE46
jIBXMxFCt+8PoGb144qxcaMAvx0JNLQfQC6MdZ+oWaNg5Ph24eU6A0ixKazf
tHwU7MqsEs5Z6kf5+0vaQn6NgiZ3btFp9340xqi/k7h/DEjO2os7nO9Dnpp3
Fbe1jwHN9+lPdhzoQyke0+Z5rDFgY8Elwa/ch24l7q9ZwzUOUrNfScR19KI0
cd/NkavHgdF/FZIdpr3I+2X4JWnHcRA0v1nGeH8P0tU5J6w8Mw4ykrxfKCr1
II30l8Xp/EyQ+SVUre1vN5JeWvJRkWWC4+4/1KVdutGynmsfk3cwwdM/Gzfd
t+lC1Zg2tMWdCYTn57Y6a3cgCYVSpTWECZYWH++Fs81olZ0s16oyFnhTaBlq
n92MhErOiRbWs4Ce/yoS5NGM/KTeOh7oZoFnIlmxrbNNyDvRZJw5wwJrFbp4
XeYa0Yq/S1mtymxgtFv959v5euRwO2CNhCsbTC/MrKzIqUcFhC1Tc4sNXmF0
c8qzHkV2UD46B3D234dMN4C/dei3GiPRPJwNbph7Pmn5W4saD7bUZ+Szgfbw
k4+y89UoejZf4zM3AfevrLY651mNdA+XGQfQCKibyRJPna9C25VdgvZKEGDP
1+2i97cSsbczdhkoEfBIeYOm10I5Egw4HDKrRUDLezxe5lWOxtM25TceIGCl
hlmUzL+fyL30U8WzIwRkat/k+vTvB7pbWODy+QQBXad+lPQuliKbn8Pb/3Mm
YF3/aY+NPqVorbtHzml3Aq5fmlh/c6kENTw6wVbyIkDgP3qwNFcJGuFXMzga
QMDG0POmh7iL0ARTyXBtJAEey+f4nt/5ji406aSLvSag8E1QZg/3d6RmujOq
5S0B5unpcp48hUgzPpwp9ImAWzXcPR94Mboe9/XvH0SAOiNM9o8wQhIr1WJq
vhNg9Vjd6blkPiobDO1+WEpA0a3j8tXL81Dt4I71b6oI+D096uy4Khf9+RSr
xltHwHpH71La+hx0pufqtwONHH9OJrjqbMtGN36M+l5sJwDX7inv3Z2FQnjT
Uw27CPh1uEbZB2SiEx8UbWV6CbDYOVf19UgGcuQ/dfDQEAGBKcFrThinowy/
rdc/jxCQv2al1/Txz8haJp+xNEbAKumj6zfZpKINGzR/ahECkmXRUlhlCmIp
LK/dMEmAOP/Ih/qWD2jTr+d6XL8IcPslflJ0IAnpuvZvzpgmoK13N0WPvEd7
Xl+4r/ebAFBjm3F3/h2y/hp1FP8h4E1+oE0+/1uUv2eFJ2OOAMGPGaJz4vHo
6kicpMk8AVcjOnO3KrxGzQULUk5/CXgvJVLXYRiNSkQUb11c4ORv4qy6yflw
dMNcxuDQPwK0KlP9S2+GopuXRe8KLBJASeLp1Xr6FN22NVFM4HCcSKK73bFg
xBd2SHH9EgE7S/XVjLzvocFP13yDOPySuxe5mN9ErS+uHanl8O1RY5On1hdQ
2S1+9z8czsa3HYU+GQGxASr//96Xst8c5hOOdAERwa5/hjncF3bbYNnrO2A2
4KzBZw4bdneEabg+ALvXzwuc5XDHU4WpuPgnoFgsbPU4Jx7JzJ8vNwQ/B4Ir
372z5PDhVo+92e5hQO7Rp+BEjh7vBZX+/daRQP7H6bY2jt62x5eKhlbHgtRH
LsEsjh+ur/fRP8jFgZ09TQm9HL/E0hmXrom+AZO8AapZHD+TikjeDt53QMjv
teyVWQIONpWILfxJAE822DgJcPzvGY6yLWAmgt1iihq3ZwiQFdKn6jd9BK6/
7yzRpwhIU1h1SqL8Eyg7fllsxwQBKvR/5uPdqSA+qilkO5tTb+saElMbPoOZ
NXMzLaOcekwDplLV6aDhSUe71zABpzSTF9x+ZADB7eFaPIOcej7qa7QnPxOI
fNnrkdbNqfcG1mxUdhYQ0t9t0d5BQMgZyziu9GzQH6z5baiV0y9XNWaKE3KA
2Ykc5bh6AmyfdoUbh+QD5M+XnFxMAPeCn9pULAJGWVtOPyogoOazTJeeBQbr
2gv1Db4R4KyQd2X8QgFQS7ZcssogIJVQn2wM+A5qumw0W2M5+V192mJJtAg0
qPm7RUcQYGz5SakmtAik3i2Uh6EETBQeT7v2rhi8DW/JZQQSoBEaV5dRXAqC
ux4LKbkQwFU+E37PoAxMHbum98ORs/7S4XPmjWVgf+FqFSN7zvoXya8/Az+A
U4xZ64QFZ30tLZk9fBVA4XzNQhBnnoVNjiVbK9eAu+KMS5v+sQFXkLS43vka
sMXir/m7aTZwUNF23ZxYAzqGJy/Oj7PBrlMhWjyba0HEHoP1mm1s0FK0szIe
1oH2t7nr5L6wASPMjz1k1QAsdl32PWvHBre3pJhUxzeAGBePrx8s2WCkojkz
a7gBDB+RKm4xZINsbjWf+1cbwRmb9oc/d7GBxeVaMVWfJpDr4bVJVogNwrQV
NztFt4DXZfeMLRNZIMmNvreiswX0RsaP2EexQN4HcT215a3gx/XQGydCWKBX
ntdmNKIVBHWcS+z1YAHVP8NPzr9qA7m1n1IidDn//5Q2ceZ5B/DW1tqQ1sEE
zk9WWqw92AMO9r5cjn6Ngzm1FV1Ndj1g9Ys9r3QGxoFv6TI7f78esD14R15K
wzh4vijtPPi9Bzi7OG7f/GUcfHWk3I/f3wsG6LoJE67jgEePmbUC9oGdbrIu
F8gYeMadSWfsGQDdaj6WiTWjYMfcK8+rZwaAldKxc0Z5o6Bt4lZnic8AeH/d
40dzwihQ6jkY71Y0AH5+3UJ74j0KUvIbN9YbDIKbOz9PxaqOgp83Zw4+sh4C
0h3j+Za3RgDX722ufP4jgN8K3G0RGQZXxtJrJmqYIInfUGahpx8sblP9kjDF
BKtvmwTdK+kHwT6xr85Ks8DrR01ic8n94IN0sG3FCRZoeWn+Odq9H4xp208n
dLHAbJP+m2HBfnDhGYNhxWQDSq+/78NNfUAjOv/T0N0JECq/WmT8Yg9QPbTq
j1nMFHhzl622zqwVFJwb4okM/g2WFlyUVgQVgTjeF8ldNfOcOtMWuN2bg1Su
7K0NLF8Eac/eKP3d0IR0d0fpqrQvAhnDyp1eDk3Inu9fLh5bBHsvWi8NxzWh
hPC8dzO0JfDTO7LAm96M1pXu8bI6vATMbGp545ea0XolzbVbi5cA5fVJ49Dy
ViR7MULbyYoLtv4r2J5s3IkYy8KeS1tyw6JHZ1gL3JznqOY7JYE23HB2tV3W
xPI+dPD55VmeS9zQ0Wh0Z83uPnRdBJye9OSGI/s/dh+71ocqlwZXVUVyQ2Xt
hvOnu/uQ78DW9IAeblhQvveGS1Y/Yn2srp2/wAOjBewWms0Hkd+lr7zXnXmg
aP63MYrzIJJfG7991IMHxtolNa94MIgOx7q/an7AA81+TGpRcgdR3NPlNhnJ
PNCFtnx92vIhZHHj8oQT4YEmfIZ3LLuGUCGkiPW680Lbbq/SffojiD0xJlPq
zQuPB++SL7YeQfKvqxQ++vPCzuU3EzXcRtB17lDV/0J54YMJ4Y04agStLFyt
K5HJC5cZFSfks0bQnQP7b+2b4YX7+Pqc1j0YRVD31vhrFz640bQmXf3jGHL8
bT0VcJMPRskM1T3NH0Nh73TmnO7ywTVDc91d1WNoQkCYovmMD+Lz32+vmxpD
saXhK+s+80EheUGh29vH0dLhbEueKT54xw9Qt2SNo/yjv0ptnflh1iOjTdvf
MdFEnXjJlAc/vMTLX2z/hYlWndxY5HuHHx49FHzjRhET3Xe4iOOe8sOhlK3s
7X1MZHKvO7svgx8a3GQeWqPAQkP55Ym2c/wwwSf8JHrAQgzd0YQpbgFovP71
XFsoCx2tFHjnKygAHfW2pzfEs1Bq+764uGUC8Fp/lqbtNxbynM0K79srAA0V
H/INsFlIdMubQFtfAejGxWfkfpSN4NeCB1MPBeAe4a/TjuZs5AK7A3yfCcA2
4YBWaMNGLYbyfnFvBGCa8ezG2+5sFHf5iVdfiQD8cyAj61QMGzVMffS8Xi0A
pfliePckshHFs9yDp0UAisuWbvrzmY0c7wu4rRwVgDX5pxb4S9hox1svJ1sh
Cqxs2rfLa4yNHNTDL09JUWCv73vzfb/YKCI966KvAgU+KPXh6v/LRlyFU+fj
NlDgncfLqnOFCfrZ5XC2z4gCrdI3GRSqE2TFOG5k+5wCXfgFFuTtCVJ55rjS
JpICxx9lVe9wJIgt4jdj9YYCvUWd4dbrBHnzpkecyaBA/5eqvZW3CIpmi49Y
NFCgbrj07QfPCLK/uC73RAcFbje8FpEYRtDGAfDIfIAC57Wvrk2KIuhb65Vt
ZtMU+Ej6+i39BII6iipuG0lToXL2tSiZrwS9AQOmhgpUqMpuzd71jSDHnL8q
BqupcBmflZJWAUF/P6lWHtlGhfVhTd/7ywgqVN0fq6dFha4Zq2YDKgh6+NbS
5bAOFVpM7r8oXEOQfMR9OV0zKuQfp01/aSKoTyaWqXOaCmMkBSntrQQlPclC
B+yosHBnsF5PB0G7/YfO73OlQtsy1WOBfQRxcS/ugl5UyNUcIb55kKCymzLC
wI8KxTftnc4cJsjims5nredUWDK3TPEckyAl5ql7eyKp8ERcitUDNkEj9i4W
mm+osIVPIe/xBEGpvQ/Vdn+gQqMzZze7TxF043Tc4s4MKnxY/Pib1jRB2s1f
a3fkUSFl59jZ/hmCBExq32wvosLMoFKpS38IqqoYubGtggpf+71uq5klKPQQ
19GtDVR4vUDiM32eoLOFdMUtHVTYWl4bpv2Xk8+9myY1BqiwVio3+OACJ59Z
ukWbmFRYNFnyWP0fQZlbzr7cOE2FrxJEo39x2Puj26UNC1QYYlOeFb5IkO66
4L3qfDQou9O8Q3mJINH4N+JqwjR4Um2d0AMONy7P618vTYMDG9oO1HA4Mqw+
c50CDc7Ir/HnPH8iO6nxB2tX02BVbm/t/96Hqj/iOaOiToNNJdS1Qxyepspr
rNlGg++6P9/7yOG8u5t5V2vRIDOUwTbjsN/i4aaVOjS4/dJT6w5OPPr/WScq
69NgyPewzgMclp6+4aVkRoMr576fD+TE33HlsdGK0zToqV8x95mj983ou5WK
dpzrjT4Iz+H44WiXP6PgSIMpw9OH4zh+be1uLFvmSoODOmsELs0RNG/JipD3
osGHIyb1Ehx/Cxv4rsr50eCO2Ma0V78JMvm5VYb+nAZZ8y3v9X5x9Ld+KmNF
0OD7dGh6c5JTD6NqXkXxNOh9K8nkESHoDHV1/7V0GmycF7CwGCeohx4bejiX
BgVj+GzFRgmyXatwZMV3GuzaLP8jYYggB13ptIo6GvwaPZTl1UvQ+PEndvFt
NLiY+UznaxdBV84LMzz7aPDl9oO7mtsJcvXj81k7xdErO2iV1UiQT+G0vq+E
IGySreOjcfqDp86Zy1JOEMZaPFp+rIjjZy8zfZOyICyHiZmemNMvXIPynRqC
cG6pweN6NqeetBtHdhoLwhP7rJOn3xEkZ3gsUtRCEM6/j92mF8fJ75lKo0Er
QaheMX7Wh9PPr72KM59eFYSP/65MfMLp/w85X/xYjwThut7ZiEPeBG36uXlX
Uagg7Cl7l5HoQdDn1o/j4dGCUNHneCiLM0+yZ9+aHE4RhDtPtPyUv0DQ9x2h
SvGVgnCiKf+VkCGn/nQlG/5rFISiy36Fex3i9N/xRwHGnYJwS8LZ59WQ0w+u
/ux/TEF4JCTiwbKtBLV9ds+zEBaCkua7dunLcvwvnLq6SVoIqvuOZFSKcvyv
vbJKQEEIht3ZY72ZQtDghP3DdDUhWIiUrGP+sNHExhMWokeF4Mu3AS2yzZx5
nLxz+vsDIVhB3/7O8wkbPQlhRes8FYJOF4+XmvuzkbxHvF5xuBAMSHBwEvdi
I/WDYjElyUIwDf91V7jARibdQ3o/KoXgssSzVWF72ChaKjSmSkIYGsUa3dnQ
xULr5o8eMZIXhmvCGFnDtSyU1sM9U71SGMYVvN17u5iFij46HandKgxbkrXd
9D+w0OihgzP1x4WhRL60kqkHC23zmj7S+koYtnqed1IRZKF826QZyzhhmDzh
/aziLxMd0rOObUsShqmSOxeOsZjopGzFTHuuMJySkm6er2ai26nxsV2dwvDW
P797Jc+YqHzA5He/sgj02f5fo5kME9kapL1mJ4pAOxEftUqucXRnrY1yV5oI
fMDzJzaLcO7n3BKvK7+KQPW28y8CusZQ5xfn2A8/RODd/mHtltwxZKGoEXNp
VARmnXBw1XYbQwYkJXJonSh8fnb1tw39o2hXyIeXXQmicKz7/XP6hxEk2pgQ
XPVWDOb2LBL734Noq38In0OKGOyj9zcd7xxEFjtv3uTOEoMDves91YoGUfwr
w4vbysSgzkn9S4Ehg2jX2Rmd8DEx6CC9XUVZbRCluSgvfqaLQ9epKOl8ywHU
vnDli/dpcRj24lD2s7d9aJOY4GrZIXGYEzMvfv5fJ9pdXieyb1oCdoXoLzt2
qQKNz7WG6k5IwjP3j52J/BEKnGkKlEBuaRhu0z6qAepATGCkbBKXDHTabxgV
cqEHCLQI333KJwNvOad42/j2AMfVt4gnVQbmHhaNVo7qAbu+nSk7Ki4Dd3vl
aFyv6wE1bEVP1goZOHkjrOuYVi/gMXndqQFkYOeVxeMzwn3AnvHuTdYtGZjs
3FK54nU/qLCTlYi9IwPV2EbrS7/2gy1p/rfu35OBAfodqafq+sGS3gVzy2AZ
2GLiNHSUdwCE3VxH/RspA69qLpzVtePsE7qSLmvnyUDKl6izj1cOgo1vP20p
npeBwypH9jU8HgKMzrxwniUZaLNO/2hjwhDglvnJA3ll4Rcrgd48NAQa/Abq
coRk4TzFRAeQIeBpJ+eSqiALPaVPcYsaDIPSVXfTI7RlYSkrxSmPdwRYx5lv
u+4rC3NGTs0knx4FR9rORX7yl4VvAvwT9a+Ngq2S1/hYD2VhVUF1ac29USDg
G9hw4ZkspMQkDfmmjIIPNtj1zBtZmMsW0ghaHAWzSqpfDpfIwn1yfc4rXo2B
kJh/21cI0qGgbJJ7etY40K0NoEqL0uHxjJ/0G6XjYJ5Hsp0qSYeneLoCVzSP
A1t7ldtTcnTYlJD2SfH3ONiywehn8Xo6ND+YBRq2MEFDTuxZRz06VAoveieW
wAT3maqbbQzoUHjNy7tyX5hAS/ELr/kxOqR29R2hfGeCN3d+vAeWdPjxt4/t
oy4mcDs8NSV5kQ5zBsWAHmffJNt0IODrfTrcLXfPxN6TBX5SqixTguhwXtg0
9b0/C3jvtlCPf0KHqp0v1aqessBwpGNtUBgdVvnJHy1MYoHscy+WWb/nxP9Q
d8SglQUsJ4c+CZTR4ecTZT9HNNhAdNU137/ldKi8zOTDiT1sUGj212yimg57
6E/m3x9kA9VssfnWZjqcGRjMmOLsp+e9d+l8HKbDVqdbwcp32CBS+GGLKYUB
t/6Ufjrwgw0eL9/mni/EgL4dEr3X69nAd2OX1HpxBrylUR3R3sEGF4y3GC0y
GHBVbZOKFmGDLc/bit+rMuCrLs0zuyQJWPPW75zUJgbsCJGvD5MngJG5kdt7
KwOGXFg8U7+SgH/NvlqmWgwoE9/zsGkLAWXL1NL/GTAg1ez5VuljBOSqNxo7
mDCgRFXTfh0LAlL2+rDrzBkwwJYsM7Qi4JlV/fr3VgxYstqHRhwJOBt/M9bk
GgOu32nGsvMnwDhjjfY3NwYcadE6bxtEwIHi6va1ngx4MPj6hd1PCVg3vIr+
z5cBPbk82S5RBPxSrQhOeM6A3is0jsp/JmBoj7ua5CsG/Hne2aI/k4AWfaUf
XlEMmCS1Ie9eLgH5V1z5TN4xYHpsmrN5EQGpPopxeUkMeONiTqZfGQHxT8rA
2k8MuNazYG9QBQH3PyvcXMhiQK0U078qDQTc/F7CuJDHgDWvXq3LaSbgSoNz
Zi1mwHkHUz+VdgJMfxdNvvvBgFKJsZkPewnQpVx9LFHFgM/dLt7zHSBgF0Nu
g1cdAx4dEncxHSZAUdPJ4Vg7AzolXo26zSRA4ihdIK+bAb/7Ntd3sAngO10Q
rzLAgK0yPgqSkwT8dry8L2SEAa8f+OKq9IuA0Vsy3X+ZnOvbzbZSZgjoeIS8
7CcZMNTgt17ZbwKqYi7K184w4IRxUKHNLAEFqVLZe+YZsH1f6b6GOQIyCr4d
f7fIgB/d+4tX/CUgoe7CL3FeOchbrm+gs0BAeL9EyE2KHPzwOrpp3z8CgqZz
Nw4JycFTQ/HWjEUCfPjtK4zF5eBqsRNjpRy+Lit+KVdaDqYv77tuvESA3doc
ioqcHLSMjZ5L4/CJXXZvnyyXg3WfZbyZHP5/34PC//896P8B/DrlRw==
"]]}, {
Directive[
Opacity[1.],
AbsoluteThickness[1.6],
RGBColor[0, 0, 1],
Dashing[Large],
Thickness[0.0025]],
LineBox[CompressedData["
1:eJw13Hk4lc//P3BkOXbOsRySCklZklQSZrTIkiVtkoqyJVvLWyoihEplS0LI
ml3JEjJ3ouwkZN9355xb9t33/lzX7+cf1/Oa+5655zVzMw/nuuy87mJqw8LE
xLSVlYnpf9/19fiOr+4UwyxXN4kvHAjf9JomSYphFekFud+J3B84/V5EXAzz
p/JUsRM586OVgYyIGJbC367buI6D+1XNS/vJYpjJo7+Ht67h4Nj48RTAJ4a5
ncuMnlzGAR8p/6whlxg2GNDjobmIg47dssyX2cUwqda2EcocDpJOvc22ZyHa
k8cHnaZx4GJHsnDboGJrPad8DGg4UA94wOm3QsVkknhbMsdwwJ46WRCyQMW0
pA9Phgzi4PfPy9ZxM1TM9ERy+0o3DmJG6wSzGFRsh5VE/lgbDuzZtVDxJBWz
xY+/NWvCwcbJHeJtg1RMICyn5ed3HFTbhPwa6iX6L8u2r/iKg/CnLP/966Ri
5LQ/d3U+4UC+criR5w8Va7fP+689FgcLw+c9xRupGI/Z/i/j4TgoZ/21V66W
ij2UMV/2fI4DsxNpT4//oGJczdVH1e7hQNpa/MAZRMWwyzWvr9jjgOH7ov9q
CRWTKB97S7LAwdMfTkcf5hH9+9n5T2vj4PMxlX+5iVSsObsthJeEA8/ribFl
cVRM7gDfPtslBtD1ETpdF03FNmSvqOqMM0Df94WUsTAqZvJV4977nwzAo11i
IelHxfjKFMRzPRngr6UCl4I3FdMVv6Vh4MAACd7vC494EPX4KDLtcoEBjmBe
5PP3qFjxk1/HLioygC04UfXCmoqFjtx8lNJKB/uv5f/3zpKYD1WH5W0ZHaw9
lpVOtSDqO7urkJJKB2FlpMfl56iYZc+keJ4bHWCa9QeWTxDXkx00wgXoYKvG
hTjbXcT4kjK7juyjgRuue89s30nFPu4T/fGSjwYykjZY2iWoWP8HrxUr+hQ4
yptqqydExbr3qbx9kTYFLvcuKipsoWKR3Zuf5rZOgWjvd6X/+kUxoaDLQjkT
E2Doi5Nzerco1q/gcUXv+wSQn9DecaNdFHt1+3eVU+QEKDkz6dvSKIpJfdgx
d/HkBOiSOmpQWCaKnaOwh/98Nw62VnZ3eMSIYm1bu6+UKI6BG8u5Lw5GimKm
wUdpZzdGQYbiU01GGNE/thf6NoyCoxGKH669EMWax/qT05xGwWW7x/bHHopi
pEt2dYqpIyCac8cih5koxnMv90U3xzDYanRDKIwiiqkeCt/7n38/iAwsvhzO
L4oNZkhFvjXuByI/BBPfcItiTQrUf+7UfiCghu2P3CKKnSjuzlg07QPsUtuM
38+KYFRzCZeDIT1ger7tWeofEWz6plMG61IH+Plef7MkjMjKC6WJj5rBHfr+
yWGKCMa0v4JydHcKCO25oL3CL4L128jGm2smgM/1jyL5eUQwb/3dd+1TYsC/
rEoddVbiem/bpzrLz4Cr86XE13PCGFNw/Z3TZqHIBfe2UG8VxgKPKty/evQL
cvzX2PA6QhhT0Pi4yzm2GgUNzO1KDhXGSMcqlVvCalDmbzHP4lfCmO72I8Yt
gbVo6tMN+RF/YczypaNY+O165HBnMUD9vjB2QrChvDW2Cd2cldQeuSiMPTxd
beV/tQXZzjvlqYsJY92rlO6muC7EsjLPtyokjE2avf54ULwbxW14OpQICGNG
6keStoZ3o3aOVzs1SMJYDYUr7Lp/D9IXz36tuSiEnatIyo+37kNKgHELtgph
163k4ll9B1DNcbdfTL+FsJV22/3lJQPITndD6nudEPZrz43SfXMDKP4MX6d2
hRDmof/fTxHrQUS2VtI9nieEyb0kKyyDIbQY6CyjEyKEcXruU1EbG0bhLxe8
2F8KYWu/Me0n4iNIOfRx189AISz8QoPwLcMR5BD9KvSUtxBmfZzHbdvnEdSd
lc2k5yKEGbG9txp2G0VYM6PbwFAIa9M+vqlOH0MWf93UePSEsBKk+J+c+Dha
7toIqzshhNWl3N6dpjOOVEb4DAw1hDD9vtTtVrHjKGlR6auRvBD220Zm8I3u
BAqUcHlzhpN4HoF7xk4Bk8h890N/czYhLFBUhDsvfRIpqDy9f4NZCDu2q3vh
df0kajoVfem/ZQomY3JRg5c8hUTv/tr2boKC3apJHmePmELjns18CSMULJle
77uYP4WKA3s20wco2PsT8aqPWqfQ1djZgdIOCvYx4tHEEQoNpVRvT+mvpmA8
oTyPA57RkHvL3rcTlRSsurQncksKDen3HQyc+U7BGrm6xfjLaYgxZ+DAWkzB
0lVU3jYv0dDBHe5KcukUTK31Ve+mJR1VuDUVuDynYPzm4HrMVgaKeNKV6u5P
wYLSU7n7lBnIPmg08okPBfOvPMWdcZKBeBLWHoY9pGDfonmqepwY6Gy9HCh0
oGA2LDrFyUUMJNN+QBmzpWD2n01e7K1hoIVBrZ3V1ynYqCW/2aEuBopaOrel
y5yC+S77dw6sMtCg9JNfG/oULGUaT3pyGEdflIKKOE5RsP2D++wPn8SR/5G3
aQLHKdipca/jd0xxtNc464XUUQp2rEf1ntstHK1dKvKQP0zBIsN17MB9HDVY
/3BSPUDBmu/+yArywdGdhx3GOvIUzFvp0NO8tzg68XQYGu+mYKQbnD+CPuBI
JBjfbyZNwa4WbcmeSMfReNSKlNV2CvbvuNnOmjwcFSezCTlspWBbzkivKJbi
KChXgO2uKAWrnHAQFa7A0dWSrQuPKBRswWy7uVctjph/729/yU3BnNd39XS3
48hkOq5em4OCTV4q+qbXh6NYfr4f8ywUrFZP8bH0CI7oSh5FaRtk7Ci77xaH
SRxpGE1mXVkhY74O1w5uw3H03MksUXCBjLlYC2xozOKoI+hnZOU/MnbHLEi/
egFHcpmqrx7QydjrB3e4ypdx5Fab4Ks4QcZwIW7l3Ws4qpgUeDAwTMaUf5/K
XVrHEYXLy/lNPxm7O/DD59Amjq7vod/Q6yZj4goVH/qJnKt7+dL6XzKmYXOY
a5HIG3bVRp/+kLF6iYKSB0Q2DDh8wqaRjHliPkX2GziKSUk+IlZLxvRDnrFV
EONNVlL21f8kYz+CLNNfrOBIbeSJzJNyMkbSP/UJLeIogHVa7GAZcX+N7G7L
ORy1SV/ln/hKxvZohWwlzidI5ngd6/t8MtZV8j1+dApHd6+rr5h8Iu6nR9fW
jeKo/MlHnDWLjJ3JysjbPoAjgQ8iI0UfyVjHe5m7fZ04uob5dTomkbGLmQOy
PC04yu6badwRT8baX1ozkuuI/bJhWdkSTcbOKrZOZRLrZyDZWBz4loxx8DGf
2Emsb5SmZq5GGBl79sFccgux/uMWGcnTr8hYfshSkmkajg57iEUnPSdjThvh
rAJxOGopnn/K40PGBg/38rUG4kiq88YjzJOMGVD27OjxwNHt5d+u9x6QsbHs
zL9nXXHEp5Z9uduVjDVE/Cf96jyOrlyUOBPsSMbC9U0OmJ7CUabbc50T9mSM
5WxQ/1M1HOnl2+7PvEbGChs3ZDXFcBTZ0iJreZmMeVyJNflOwtHo7DEJoYvE
/ml3VitYZCA/le0cHkZEu9O41+wfBirL+dttoEnGgl0U5CufEu9v48nmTTUy
9rNtx+12Vwa6zMj7ladKxvYdfqJy7TIDLSkEf96qQMacpYMKqpQY6EC6buCU
OBnb4c+nLtpIRx+Tvh54sSSIWS3UCLAv0NC7B/NqZ+cEMckSfwZ/Bw09N9qv
tXVaEFuX2HnnXQkNOS591M0YE8TCC/0eKHrRkPLpyCu1bYKY6b95B3smGvo6
6xbAnS+IuchpC36cmkTpVZ+D/uQKYgYWEc8ZPydRzHtGSHSmILbx9lH/tw+T
6PEp2xj5JEHsufnI1+Xzk+hY9PlPBmGC2FSNy7eloglUc0y168VtQUyib/h2
zs1xVCLq2n/WSRB7e8wlt1VzHGXSMka23hTEzJNfUIIFx9GrCOnpDEtBzJoX
XqkoHENnJ8lsdcaCWO5ltw24OYq6Q/4p8SgJYu1RQ1bw0Qii92f7BE0KYL45
H2csFQeRUKnTtvejAphdcpmH4/IAUn+rUJQ1KIBpJurfVqkcQP6G6fSGTgGM
bPfyx/TlAbSjONlMsFYAm/VqcjD070fnwmKUIjIEsHD2kbEHsT2o5OTzzjhH
Aexjd0R8pksbopyvtbbt4cdyR+YK4jNKkbkqf2JPCz/WVNuhGx9UjOIpZwfO
1fFjO/bbMO12KkIKzZ1XjpfwY4F2rM+nFb4gHePJCzve8WMmOdTt7GdSkbse
p17nOX4Muyu46Bb3BvRonlI0quPD+otwXptPP4DMthe3Kn/wYUVDO0/xowrg
sNaQplHCh7UvnBa4XFcJFoovyMqn82FqAfMKFSO/iPOU7XZSIB9GklzAL1Dq
wDGVp4Llx4n7JVz1M/c2g1TZH/MHS3ixwAf3zCh7O4EZmfeaVh4v1mKrRVON
7QRcGxeqdDJ4sRjKz1GaYBdwbJ2MuhjNi/XX249Ql7qAsh8ZPnhEZJv9mvtQ
DygasHpeepQXY/Sl29lG94OqGKbtx0t5sJa4oS8LfUPgQaB+oMEXHqyq9sbB
H4LDYO+98H9nM3kwj2E7UXh8GAQZyFVYx/Bg4cem8FPJw8BkxfimvwcPVsHS
VvXQZgS0X4zLq9bgwQSs7nJWtY6CCbKWrsk3boyJFtq5/fYE6Lsp/ds7nxvT
OjGi0BoxAVoxkvmnLG5MP0AblyudAN+d/9wix3JjSsAgKI1tEryrsX/d8pgb
S3A5P7sZNgn0fMLazCA3RjMIKQ56PwVAh/u1Z2rcmLPjq8iJ0ilwUPnq+Fdl
boyL7Vx+d9cU2NkrtyK+kxsTz69v8aXSwPKRsm09zNxY57rf7uogGkj7N25t
9YMLUyAbnPhtSQdxug30kBIuLCnvHbz6gA7exOW5ledxYR6HZXoehtDBE8PH
gdJJXJj47GCgFUYHl9IomSN+XJjAa0GOLioDGDMtq4p4cmHnSNHnuwivnLzY
+03nPy5sRVgz3P4YA+xnS2tMteHCyAPC6XKEdzittGZv6nBhpXyx5MNfGGCz
UNojSosLsz3pnhtRyQDzfJxstYe4MPOrU6vebQwwUPpHRGE3F1ZOsYmeWyD8
RPkaZ7GdC9Mv+nTXkx0H9Q6xci9FubAF2V0swcI4+Eq9qc7g4MIei9ldOaOC
gxwXox+STFyY0q2w0k2Ag+SfB04bL3FiZRWJC4cMcRByb+NK7jgnhj3IOABs
cRBQOzTa38+JaQWq/OW/Q3hPqtpFsIMTi3Ati7D3xMHNprAnd6o5MWX/xLJP
oYQvTQBlGePEWJSePb/3Hge6TZNJXkWc2Okr8y5pqTg4bBJxiD2XE4txoGqb
EH6VbdKuCkrlxNYs45vti3EgYkK/RInjxNzLv67OlOOArSly6l0EJ3YCCEQw
anAw3IjzpT7lJHyWGHKkAwctxtHxip6cWGdZ0efAPhz8aNRR+XKPEwsmZqQ7
QnjVeOaHuiMntrQ5kvVgEgcJje/Pf7/Biam0DVzYiuMg1Fhv7NRlTmw0dDxd
cRYHTxrn3BtMOTHvjry3uQs4cDWO5zqvz4npz3rzJi3jwLLRIKZLmxPbISK4
ybGGAxPjRcXrRzix7rg0q+51HIDGBDSuzIkF6Qgp7tzEgZKx0RkXOU5MRzPu
chuRJRuXB+e3E/U13Da5SmRe4+R7HqKc2MPRkb8hRF5rMGHfws+JNW1rlY3c
wAHNaO3tM3ZOLDzNoIuP6L+rIXWPwAYJs65VWptfwUGN0dmSiHkSVrp/PNRw
CQfFDRunt9FJWFG9TYbwPA7SjNJ7E4dJmPd7sXNG/3AQ2XDedW83CfO/tfx+
kYaDQCNmlk9/SJiOz+MYwXEc3G/IDDtcS8KYzifbxAziwNbIbFdZOQmbkaAL
Rnbj4ELDlsITxSTM7dbFUtY2HOgY5ejWfiJhn3PtfAYbcHCwwbzzTBoJ0yqU
8tv/CwcyRuyO7fEk7KoQ3/C/MhwINXxavxpJwvhe7vslXYADVqMrr0dek7BO
F57zvzJxMFtP2ukYQMI8hj4WdifgoLn+2okHbiTMtjMl58pLHJQbcrdtOhHX
c/klVz/Bwaf6Ajt/G6L9P5H9H//DQXA974uwcyRM5UXsyLfLODCsL/mdpULC
RtHjc6Y7caBhaHdDdS8Ju6M64nZJEAcK9eT54p0kzEEqY3crEw646m9SqwRI
mOSy0TX5XgaoqhO9NsjgwBxubOu+HMoARad/TNuPcmBXnR8LCzxmgNQ6Zx+8
hwPzGza9c/QmA/jXVSav1XFgFdoFfMuaDHCi7i5NJIMDm/6XmSA+QAexZrvS
lBKJ+9vStx2toYOl4TYbnWgOTPfthNLYZzrIXD/S998LDuzL6zCfIR86EN7H
1NxyiwNTaL5x4f42OhgNCSoMVeDATryipFtr0gCU1LqXLsOBXV+iizltp4Go
dFy5XIIDM60dTeRgpgGjH6bp/3g4sNASpqG58ilQOEd9b0Jnx3iy39z7pj0F
Ai8m+/Bls2PKwjc87stPgsGhC0A2hR2T+cDR1s0+CTRcSWuasezY5PnQh90D
E2A68NZ/Tq/YMa63J8cziZ/fl4r329c5s2N+O18EJKyOg73bygyf72PHzFN1
TO3yxkD9YBuV/RMbtmYuyPq3dxjsiDTqvfuRDXO0LE7LTB8G9wx/Jg7EsWHp
tgMO0m7DQKIoX+nbKzZM4Ykm+xL3MHB4GX7iniMbNvcpwdHswBBgVzN1HdzN
hrm3no39fXsAgJf1v8piWbHgr8WHEm92gU+HK9zuB23B1AoeTsBjP4G+2d/L
vH5bsEieSaMxtUow6D4JEx9twXQ/ltXs21cBhIoFuBsdiBz21PareDlw07gS
J6u3BYP+4kaW3SVAXXvhVyvbFoxpm+f23r0poFxfTkzViwUz27zf8/55AWq+
ElQyfZsZW5t8vKm9pQ21Pk+uFXVgxqSuS2uuu7eh9sKyLq3rzNhctd2aFaMN
9Qn+Ww0yZcYSbjb/29H+F9Eqz2vsOcCMtbmwJxxP7UDsStu/Wc0xYdPn1rdF
qvQg9Y1PZc1uTJj3qaSf7UsDSFO+tmHZmQl7rHz/fqrCIIJmw7077Jgwnoe4
qrLlIDr1WWTT+SITlsDl+c3x5yA6Z/sIcKsxYdqxixEer4dQV8wz74CZTeQQ
dTnemDKCjmnm+N5c3EAetmKp5d1j6OiEU/6N0Q0k0fktcZJzHKm+URi70rqB
nP+EVicfGke76Wn6pnkbKPlson3zq3HE8z5J8KjLBpr79kIXPzKB/q69i+MZ
W0cNXPe+BT8k/P7R7Dd72zoK07/0JTh+EtWcE93CXLmOvO4oS1CJ82lpZrjt
fMI6Gjyu+K6YfwolWLxW7L26juwu3FDXeD+FHEv9SnLa1pB1g0/nx3gasrE/
Tk+rXEP8W25ttpTR0FUhlu1JX9bQ7TLyxuNuGjrj6OUTGbqGah99ua0vQkeH
JB7qPTFaQ6E/iiiffOlIuUrt0SPNNSQ5wN7+7T0d7bm3mPmfwhrSf9vsd6KQ
jiTq7gk4cK2hd3NLtd/G6YjZw+Wv6c9VxFtUx3KO8PvKbiVOw/xV5PKqkiZN
nPfn/tDUTyWtIjuUZ+NAeGBU3iH2qM8qytkf8vTSOwbq/yvXdPD2KmJ9u/cu
cxYDdfiOMStbriKZUQFPSYyB6rqsbWS0VhHMIL8qGGagygDpt5KKq4hU/hhX
XiD8cWCwiiqxiq7NdO3czoGjTy+uKfCurCCmzzrV53fjKOKo+ex8/gqaKzt3
RcYKRzZMux6RU1aQsJrvhrkTjlQrcZZ9ESuI33dfmvADHP02ekq2d1tB1ljX
DZHXOHH+NYnys11BXZmC2yze4ci5XVzqw4UVVJSvorIrEUc813P3dx5aQQ3J
3/7CfBx1yT76uiC7gp67F+8I+4aj9KmT2hTRFXTbrPqQfSWO3HMFqvdxrKBG
I7ZVRHjx1H9dJqcXl9G2gvsmUX9wJKKe0m4/toxAJlVisQNHwxuulk//LqPd
no0n2gjf5/04Ov7h1zKqZbubd5jwvU8gu2tZ4TJ6xl9jupXw/RnD34udqcuo
LfEF/xMGjnaQY7wW3y6ji2bX2u1ncMRos+UQClxGJ8N63jfP4+hb9P7Xyu7L
6HDVa9OyJRwFWa6JGNovo0NZ05Pyqzgy3/Ur9qYZke0dr2wlfL9nMkTWX3cZ
tX6xTAgifL6UbZGdoLaMPFm2ffEi/P7r7u5DSI4Y//ngqzkiR6jNfOuiLqMA
y2HlKSJbr5eeXCIto3Nup6JuEPlAeUC90PISeh4rVX+F6I8lwPT8/oklVOnz
uL6D8H6TwbYew44lxBx+/sNfwvtxAuPWDtVLiGs2zOQi8bzOrZ9p/l+XkMYZ
0REzYj6aUZ73EtOWUER1tkP3P2J9rukSm3UJ7fosjg/QcdQpTfHrfraEamx4
fG5O4ChtvId7+cESOsMue/DuMLE+WR/DhB2W0PChla2bvTjSuXN3q4r5Evrb
wH2a93/rsUqSv6W+hDRDP4zl1hLrgf35HLB3CZkYdwToEN73eRqrniS+hHb8
+tJ5lfD+dn5V/Z6VRXS8bV2EmkHU/8/G7+XJRSTYEHzi6wcclUZWXxLpWkTV
qoJZPW+Jektdu2lcsogi3hrV5foQ9R7b8+9WxiJ6tRDSdu0+Ue+MOffA6EVU
CRvKQ2/h6M3B54HfHy2iR/an1/1MifqunBPovbWITIWssk+cxJEK2h65cnkR
nSwnczw7TNRTNz/1gMYiurmj/1m8OFFPXu99JgqLaDWLRfYeN1HPZv1CR4lF
9PFQg2H9KuF5i/6fyWsLSOzxwSOCXQx0yoV7VPTbAlLLPF8wGsZAJP/rXv0Z
C6jCNeixqRcD1cR8paZFLaBO+RLSfgcGMqqxM1B3X0Ate5jop7QY6NyuilyL
Awtoq8JdvfE+OhLR2Kq/S2oBUU79uDH/k47+mt4ZogssoN8KQ2/cs+jI3HuH
iBdjHv0npSYx5E5Hll0ejz6kzSOuFp9DFzjpSGrmj5BD5Dzi+Sbsu5NGQ0Mk
+WyVgHk0sJvebdtAQ7aHOvp/WM+jBNHgAasQGnIKOagzun0eWbw3bJUTpKGH
pxgC8hFz6IcH6YbX0iTSuHoyfdZvDuXw/jm2/88kWr8Xc7z07hxyGo8atc2a
RN4J+m6GZ+bQHa47apaWkyhgPaXLhWcO1TgN5MdiEyg871rKF59ZdO0dqRJ3
GEfZ238f1XKZQf1Gd1L/cxxBKzzXhC5enUFqqaaVPOoj6OQKjeZiOIOmN97s
OMkxgrpbSLEf5GeQhWjm1vfxw4jrOWRiG/+HgjRyzm9pHEK2czkVtZb/kFQg
eHl/6yCSrH5leMl0Ghn15bz1ne1GkiORZeMONFR0/93hY9Qa9G4+mts7cBhF
vh6JNd3VDLDk8RdGtsPI3VVw7szHZjB+/iDPthPDKOaOHmVt7x+gVtDAU7w5
hBz7rK+e2tcC2tyY+ebchpBF83edBwfaAHnJVsDeZhAtie3j1ZPrBEEr+4VN
jvWjqDQlvtWOfvAl/fEbyR39KMGk+egiZQAU5EfId672oYp4DYdkwwFw3q1a
QehuHyq/QcmiYAMgdFFpX6BVLzLb9vTc1g+DgGdl+YCrVjd6rHPMbMl0GGxu
vNaES3+R3FScgY7LGEgqvxRhW/QXuTZHcIdGjQE9f2k8yP0vYme2a/aqHANh
vIXxHUttyOONbY2W+DjYLdG75e5yKxr2S+NXQ+PA+IhCTfLKH2Sd7Xzy+cIE
mFubl6or/oPaZ+Ti07YSnsbQo5mHf9DnnqucVnASDJ06qwhWm9G4yG7sTeAk
uH/hYXD76m/UtMm7h0NoCmiNBWeJrDQi18jJ9FARGgh0lrl242EjUrhawjaj
SgPN84UCuSsNiHxpnjJgSgO2rH139VbrkXfvZxfHlzTwaqeiusdaLVLQNXku
v04D7R+xqSqPWuTIfKRzVZQOpJTPvRder0GHahLPm6nQQYHWI6ac9WpUurmp
8MWGDnovV/8c2PiFTLbdOk/7SQdyQxbuSl6/UFCiA43cSwd3HKb3PNr8idqv
nIwqn6MD9geiL4WYfqKGM9v/lOxgAKUIm7OnmCtQUEqYIc9dBnDftswa/uQH
kpn+JHXHnwHKk4IK+pl/ILXQ865X3zHAhbw8sYcs5UiluVCv+hsDeDYx92du
wdAaxrOvn/CBAjVSZJEHoRn+1/0yAji49lrBKZxchsQH3ubPSOKgwvO8eOO2
UuRu6DwhdxQHC3MTro7SJajUT7c7WBcHexwf/+LcU4wcKBXiT87j4JV56r0T
qkWI9b5VwbITDrDfR2sHjhSiUdH+/CcPCA/pNu30AgXIga/kZIgf4evDyw1f
9b+gUFmSi847HLzIfrnrokkecvyo+XWK8FLZLimPufOfUYTLxXlRwlPSQgZ7
9lnlogr8QxHrNxxkiKDNyPpsxBfMv1lRgQMBtvHMP+2ZiFWjO5+7Dgf/zQqY
8w2nI5Zryt/bm3HQOXCEQw//iGLn2DgUCG+DputffFdSkBZNzoWN8HZS2Qur
MrZklPL08JD1MOGnrC98ywKJKD0lwUh/Agcu0T0lByQ+oKY92bH5dBx8pPA2
dxvFIj7Z2+UphEfvTF9VMLWJQo77CBARXtWoz/X/9SgCNQRH64sTnuVIZxnQ
CA1FkY/PRsQQ3k3gTXOzPvMS+R+z9ksi/H3412l548dP0WlLEq8K4eW3zAPo
7oVHyDrPaO9JwtPeEyamoZZ2CHsq3t5D5CLM25E7xxjExEkLrRGZkaTLyhNz
F5BNFnriiDwY6W249cMTsOY8e6ia6M+orztS+d4zEHvRRMqd8Hd3qMRMQmIw
uNAtkpy5igNyQc1bxZfhwPLArp+2yzjQ7XDXLHKLBKHdiq9SFnDweE126Jhl
DCB5F3I4zhL1fO1QMSoTD8YrJUAhjoN7H7RFM8USgMDuoGOBUzjgz6M63OZL
AoMFHFJ9ozhIr8BLD21JAXMj1njJAA5Otv3kX1tMBYOap8skCY/3j72//p2W
BphEjiRxEB4X4T5NOt2WBUa/KAg5VhE+lpC+LFibAyLlTjaPYTiQFV2/MNWX
C0g5T/kni4j9JteSltvyGYTfivP1SSX24ydwltKYB768FFynxuLgsnrG2n/V
X0B5dPfDQ+HEfjbwMT5aVgD8Dd9KcHgR+72FvvS+qBBY7HsbUnwXByFXLiUw
5RWBvcf5s+btiPfFRXm+MrUYOARfeLnFGAfXQ3ujTELKgFbRoTO+ojhgXvOT
n4lHwPVeqowiBw6aPgv36plhYIlJUtNggQFcJUqdp+y+A/bfmS4jzQyQi5OC
lQJ+gGO7TH5GPWUAbxkLs02+CtB/Mjsad2UAk0s5O5oiKkDu2Y/mJZcZYLr8
/KfbKZVg1LZe+Os+BlCOSGj+UvkL1PTnPTP7TQdMtfNRTw2rAK2nM9GliA6a
NnVvXGitAneMPEaZ4ujA9SY+uzhcDcgCHz+FOdBBroaG8FHWOhCzMvEgYJUG
Iv9NZljubAIsywNHqGw0wBQkJKBn0wTcak/H8gxPAXtZrXv705rAkruPvS/h
b7XLIRos+3+DJd+ooBXPKdBecbg+ETYD5T87pHbgk4Aa6ccYvdYCJINjSe3F
E8BbJdu0MbEFxKZdNtEKnQDjdX8LCsdagHcqi+v+mxOgiFneK9ClFcQm+kt8
F54AZrd+8+/1agPsfz73R90cB5FakvudYtuJfRujOrw2CtL/E9Ws62kHM/4e
Tz40jYLSTAE9+W0dYI2v8Bxb0igYEN9iNRHdAXyCbAx+6I2CvYtjwTbvOsHn
dMt/8iEjoDTn0/SV8G5QUWemZCIwDFyDpcx2n+wH1iYMPdnWfhDGXCBKPToM
YPCzIWvDP8B5Mq9puokG+veqZx86WI82VPfmp87QwL1g7fBXRxvQS6/4d1eF
6OB0pLyWpXYjyhR6eb3uIh2Yx3NfzkluQpNatnOpxM95XbaTbTKZzcgujEq9
RmMAvqOV+xY+tiHl2LKcUd9p0ORp4dZh2ovcfyzvLA+fBnwdl6BZdS/CxlXD
3ydPA9pElpkR6EPGBzLcz/2aBkugV7pOqB85V73VLuf6B1S6GYfzV/tR1ozr
n/ch/4CQjaDtrpJBtPeU9OK5uBnAvmPn3O/lERRz1pTClzMDajQ1K6/uHkX8
lk/2/SqbAbFfb22JODeK5tz77I70zoC3Slm8zNmj6Ft6dPu2bbNgank2pMBi
DJnwCRWPRs0CAZG/vrxp46hc/HhbXPoscFl1U5lpGkcHd9+ZMSueBUxqjmz3
l8aROGzaW9sxC0It9hde1ZlAQ7eDonOoc0D81I65Nz0TyK2V1dM9Yg5E9meQ
ZJcn0fjAgXf7U+aAa6prVpX4FLrMuJ4/mT8HojZj4lg0phDk+E63aJ0DESbX
HdU9pxDnEc+r2kLzQPmQHUvmyhTyOJn5cEV6HvCOKV5fpdIQ40xXRN6BeaCR
5Hak9xANNTscadx1dh7c+OfsY3GbhmJi5gFX6Dw4n/Hm5L4BGuJLk7H48WEe
nBGJ2ca3RkPe+WfdPT7NA7UsNiZPwuM2DZ9yGU1E3tQz5NSnIyUm551/+BfA
c9Xfer8z6Cie571m0PYFIOFklbbrBx1RxOoundy3ACwuGpA5Ouloaf/e0EKj
BTB4/0a8CzsDfb8xyhLzcgGURPa6NlxiICj5jDctdgE8ypu6KuvCQFi7PLUg
ZwGcthflmfMlsuFtxabfC6DtoYYCnkFcTxJS6xlcAJn5ERNbEQOh8oJjk7ML
oNOzZaX0N+Hvw2sXWUUWgVb/XJX5PANpzcReF9y9CPZtcg9fYCd8mantJKm2
CMbC7vD/FCG8szPAR818EQit87usHcRRMTc5yzF2Ebh4Xaj8Tnhc/eeXwgc5
i+BI5ZFKo4c4+up9sdwfWwTcuu9/nvbHUdF8zN/4wUVQTA5YiIrBkVouGMya
XQSGGV/RZAqOCh0GacWsSyCB8ROl5+KooG83S6vsEmAItuY/LMfRoagansHD
S0DNZsr8eQ2O8s85ieK6S8D7K+kNZzOOVPkFpNYuLQHDcMljS+04+lL9WYHz
1hJglso5doHwt6rf+cMiHktgvKL+wf8+X8/TWtKWfrkE4iK3118j/K2yHHVa
OXYJ1E10yXDjOPqcp3lRM2cJyCbU3do1S7Q791vpY0ug9aPR6+wFHH2S83W8
+HsJbD1s6pWyjCPloV33rQeXgM7Oy0q8hH9z31c9uT27BJYpT0IGCX8rm90K
esy6DPIqXeJlCT/nkPnevhBeBqkSduc7iKxUn/shUnYZ9OkezVohcnbA2czk
w8vgffO51Of/az+2UPBZdxkIvs89+YzwdtZa5Hd0aRkY9/QFLRDjKRQeratz
WAav2Eh+zYS3M2/3tnU8WgYFSYOq2whvKyg8GRgNWgYK6t8y2uZwlDEqTZt9
vwzm190XN6ZxtPfDzwWmnGUg8f75nggajtIv32Tmw5bB9cnl8zFjRLsID8/W
38vglK9VmOAg4e+mbBG5wWVw8SZjZb4LR3Ivzuw8OLsMal5f+6jXiqOPJ+fk
j7GuAM8rbMU8DUQ709tDxsIrQEv6uwn4iaPU4iPaFrIr4JY/a/DANxyl7PO6
4Ka7ApJeFyT8R3hbdnKnle+lFbB5vKXajvB2clLFrWCHFQAOtcGaCBwliXE9
SQ9aAYX+CwP9XjiSacl8Ufh+BTAH7rn35i6OEl8ZR1RkrwB/VXvZElscJWx5
k9HbtAJ8eCX+mhvg6HSyvGV1/woYRr82mjRxtKBTLvRlegXcWdj2qHYfjvSf
457PBFaB9FzBGSMyjmYE9E1UTVZB9v4aplDi/Yn53M+63XIVjC280t+PMZDO
uftfOV1XQcQlnc4L2QwU9TZJqu/1Kkhmkhw/+IyBjktuzj1rXAWOMmcZBkcY
xBv5Ju1e3yow1L/0YpcMA0VaKVy9hq8CRTGO9gA+BqIlXfqlyr8Gtqn/1z42
QEfh8l/e9RmtgeBskZPbfeloWO2m1sGGNUB/pgawHBp61bk5s713DSz8whkm
YTSk5hGRysVYAwq3Nrxd3WgoCP0Q6OddB7X+W0WvHqUhVR3JoeeG66DL+ezy
JppCT8/+CeivWwft+ZGJtV8mkfL8TY3a7nVQvU2pyTdkEnVGMP3Lp60DG/u1
pmanSaTUqWj+gmcDnBpi9T+8axK1WQYqHDq9AS4f3vNW/vUEknXW/P2idgNM
vXptcsxkHOkcea8j27UBPtqusXrvHke2rOsl2OQGEBlObbPaGEOpUaUp85yb
oNz4+wmhjDEk9+uoxzXdTSDeG116kmkM7dmhvvtA5SZQc9CfcYgaQSI3o7Wc
rjHBgOr7e7xCB1GKkcEDdTsm2HPByzfw2iA6pLqax+HCBE1opUsGCoPowqb5
noTHTFAu0k+btXIARbwRF/r7ngkOJTb3GM/2I9HydxOwmwney75IYg/sRdSt
keFCl5hhwo4b53nv/0XZf5/8fGHFDL8Uwq8thFNPht9aYnFghqzMkmoHH7ah
O7zA4t9DZmj/HNjUPGpF9Zsj0g0xzLC8wnHGl3Cpz/CBvIB+ZogdF3xyqakB
0bMaf6/YsUD70WGrl2dKUTnk4B9w2wKXSnJ3/oj8ARjTk8K/Hm+B4yFPzl8P
rQDiHxoksvy3QF1Sk+mnF5XgDnPE3gcRWyD1ae1DY89fQKpcRkewgMjjdk+k
LGrBk+PHPLXnt0BL+xNqjj6/AdTxnPpwlxXea5cBp+bageOC5UzAI1bIOuIl
7WbfASJTTiw7+bJC6+P989rdHWCanYdDPYwVfjTdb5ZW3gnif0VJNX9mhXNt
ohT/591gU7foEssMKyz1wq0fsvSDMoPZX9dd2eDp6e5899NDYLpZ4OeMOxvs
PGR8adpnCEibK1X4PGGDmX5d4Xxfh0Cg/U0sIZQNSvXPzqvLDAPTp31Fg1/Y
YHD7i1S1hWEwWlabdn2ZDX7eY/JqMWAUUHUmUmeY2aFsso2kfdEoMKhnT/Hh
YofFEq6hruOjILdLOyFhKztc6+8vPHlqDDxcKowa1GSHxzSyLCY2xwCfStKL
6z7sUCOiN/iaxQSAX78/m3nODn3SBm9NPZ0Ad2FfgE8YO7xXz3eWJWcCtBuJ
+yUkscPT9M4LDZsTIOFWsMfgT3bo19eyszZ6ErTMZD2808gODz0Q14z+Pgk4
Hta6s7SzQ+q9tW/To5PAMZD9P6kJ4vrd3jp7lKfAoWQPp+vcHJCvRU63rJQ4
PytE3ZqhcMBjq+kXUnunQHRe4U0fCQ7ofTcxV4CJOG+Xz9gkKHJA0nLPsJU2
DdT02l8dNOaASYylHYxvNHCNet74ejgHdJdpllONpQPZMEcpqxgia7zVUy6g
Awav3/y1JA5YEZ/5Jb+eDh5vyYu+8oUDTjqUzpqv0kEsQ2DcrIVon398nO0M
A9jelCu52M0BPaxG/2rbMIDSMHh1YZgDRj2RXWV9wADfOpxVz81xwBT7Y1+2
xTFAd0Wdt7EQCUaV8/0MHmGAJDB81kiCBGuyZN4tzzOAY/GqrKEMCR4S7Ssa
ZcPBas7een1VErT+kzZwWgYH5XuPxetpkKCk9cnblSo4eJ586a7uCRI0aXlv
/h3iQDw6UEznHAnSUlctjl0m/CocTzthQYJUfQmeX4S/0oML0XFrEjSd3q/d
QPjsiP+ojfY9ElxrWXx84zkOmJg31KAHCbb9cFL8R/iu6pEwD/AjQT5vmyym
OByY3T7xWSOcBFeSuXyTPuFgB+3y06MxJKj+VeuVWjEOxm3vmqknkaCzyJY2
w3Ic5A48lz+SSYL9cjzqw9U4uG+RsHH4CzHeOc6Y1SYcaP39+vtQKQk+vJ3c
F/YXB+ymv5MOVpCgv1rAZGYPDhrqxu+r1pEg+dOZJJ0hHEScYjI40EKCcsFJ
C5bjOLhaLiqp0k3MJ1SifpVGeFZz3z/lYRIUqD8rLPqP8HyhTsU+GgnqLg2U
fZ7DQYHK1bdKc8T4ORYlDYuEx7P+c1BcI8GCrIsbDis40JF7qanAyglNVqw9
A9ZwwJeYJCDPwwkfigoryxD+b91WOrRHiBOG7lzk197EQUzknwI5CU5oNBFJ
7SWyNWXq2W4ZTujNFnDqf5/nK7xiuSKrwAk7u0/HRBJ5jiSuvEuVE7al3qMW
EP2V+u7fIqPBCd0cAtDZdRz4bei2SZ3ghOqjPG9vr+Lg9APLtJ2nOeG074sU
/mUcCM3d99hxjhOWHQxcVFzAQbfza+PtFpyQ6Yz/m7oZHCRNpEhJWnNCM0uO
V1MMHDhal81LOHLCAvrz6eeTODjQ11q19R4ntD/xqiF9BAcrl+jR4h6c8JB8
0FGDfmJ/tbC6iPlxwtiItdOOnTgwrTkgLBrOCRtSWL8p1xPz78ipokdzQtZT
ng9WKon9MCHvUZHICdN1Ffbrl+HgCklm6HYeJ1RJlODyyMJBv2h8hG4J8XwP
xm5dTSK8v1tCf/sPTqj2eUXvVxQO7HWEPtU1c8IFDkkBRX8cTJ0Ptk7s5IQK
GadP7X2EA2cbHurDQaK+rzcjs11wcM+P1Wv3DCe0fSWrZXgRB17lc6d9BLmg
7Gf5lrEdOGBpdmW6JMYFLWfcRKXJRD0HaHn7dnLB/sEY0hgL8b4wjYj3KHNB
E+9T/ZxDDBCh1Tp+2IQLxntEHC1/zwBiRmdi+My4IN/B1EK9FwwQc6XeeOQa
F6zwch677M4AHzwqC0JduCDXlVT/ncT7n1mc70d/xQX93Tx3qa/Twb6a/WoV
EVzQWiApfPsYHXzuyJqKiuWC5Of/FEOb6KBoKdlUN5sLJjTJHt2RQAc/DkXs
SKzngmWM0aQJQAedn91KzXi4oclmn6O/LQ1cKZ9x2SfEDcnHLzQ66BFu/u0s
zS7BDRl78oIH5WlgZNr2eZ48N2Q1sF18iU+BaaWLZnwG3NDyGVVq4PYU4Mg4
PPfjGTc0ZUkMHb4+CYJD6LEnQrlhYM2AuaLGJBB3T9SrjOKGEnLLkZtCk0Dh
JH/czwxu2BDXq3G8cgKY9o3qVddzw1zjQJbLOyZALCUirkGQB6reYZe5830M
qHrM6Xe844HFo3Olv78Mg7Lr6fOXEnjg8xyOTz+9h8EpPcv4znQeKFesynzt
9DAwF6mb7yrhgc3LcQ6eg0PAOzcxvreHB/by/8x8wTUEaodNF4Z28kIW26jL
lfoD4Lrhpw+MNF7o7bp7xX5XF3iy22pn7yde4nlfJah9Jn6/Mgt+qP/KC5k8
ZtXitDpBT75rfGY1L3S3PWiodqEDmEkqxzlMENd/NT9S5/0XGOLZMaNyfNA6
vk1KsPIPUAvJfNubygfNNG2H2ZWqAF9r6suGZH5osuflh5nkLHTAP4TVPpsf
wlr3Ap2lXGR2+NEj5kJ+KHfyYtbJbXko8Z3RTdUqfljFHZKubFuI1K7On4ia
5Idmy0I1yTMIfbq7c+OzqACsu7XwI9+tCnWtOec/thCAkp+S9P2etSDn1iHX
WksBeC/sjmgydytiyjZToNoIQMYBSpz1y1Yke+1Y4icnAUiT6XlS8LoNuX4X
Dhl+LAAPzVLvWL9uR2z+pY76HwQgiVR1edS9G+3j55IRGRWAu0i4zO2ZAbRD
5VOj0aQA/F4raqG6dxAJnDd7FMAQgBp/vqekWA2i6aiU5qUFATisuRId3jiI
cmWPP+niEIS2XhYWj1KHkIqWR2/8HkFYri7UmKgzgqSspJ93KArCOrvO3DH3
EUT2qzlIVhGE/G8lJmvTR9BMNfWlr7ogDGnIm7rNO4ryzucftTUQhD8xRx2J
hlGk6sSIlHcShFeNSVPKGuNIJvjNCevbgjDurnq3sP04EsrTmI75TxBGGDmR
X4WNo7ml56f4HgvCxp/b9A5OjKN8v90L06+I53tD3qtPnJcPxVieLcgVhPUZ
bI8YlZNIFnFsMr4IwsLjpYc/TU4ikcHs9N1fBWGDfBrXGt8UWty9zvzuuyDE
ap46774whYry3uU+aibGE1/fUtE7hY7UNvNqzwlCm5ly8dB2GpobW5DevyQI
0+2ufYmfpaFs1q3qO9cE4cNbo4KAj45ktG7YMrOS4aHBZM89x+hI4NNs2XcK
GZ7uslRPT6Kj2nrR1k+iZNikR+NUKKUj/8mjUx+2kmEo72yY+h86WpX2E/WR
JsNvOzPurm3S0WiEkOuxA2SYtjWVk+scA33IU/NXOUyGH3Yi3XE7BrJosoiR
OkqGW/NCPpo8YqDfnMlVLMfJcPiJVlxZPAMFyVb3zuiQoZjoZtKPz4SvjtPn
BvXJkCKul3amgoFKPQ7u/GFKhlXmgnEcowx0/92lw3kXyNDAq5933wIDqRR4
Giaak2FdR/d/vWyEN/HKB77XyVDx5QJokcZR6PULzcfvkOGBOZ5nwuY4MvR6
OH7AjQx3sfzzdiO8SIqJ3ZB+SIaPKsrKrtzBkWfr6F5WHzIsWrx8viwQR2oz
XNpzT8nQvvXWxcNhhA/59l0cfkaGJiFj/w6+x5G97n3fihAy9KxiufgjB0fS
NtHvvrwhQ4nUgo4zRTjqfYJykt6R4WNtJhsbDEeRsUOV4e/JUOBJcMf6Lxyd
LeHo9vtAhq4P58W2NuKIr11+5l4yGb7qi+L6Rvi6as6YZJNGhu8cakKGCH/7
Ct6TPJ9Fhp+1M9++GsCRllKk6slPZGh49hR72SiOlvVL9Q/mk6FjxpPq21M4
+mLXb7nrKxk+/b6jMQ3HkbMf633hb2SogKrZbWdxtOeD3Eu272Tog5ivpyzg
aPjb6cT5CqK+HEotDss4iu10/TpSRYZ/Doab5q3i6NJieGNrHdGfs3mL1zqO
hIS+jlQ2EfvpUYBp0waOGpV7VvNbyHD/GEtV0iaOnhsyk1PayXCR/Gb/OpFP
OuySi+gmwwI49vJ/fw9hCtDT8u8nQ+93vj1HiFyS6HTObZgM5eVbpSSJ/tyw
EAfbceL+3t3X/ddwpNyT732BRoYj9h8/3FnB0dRyR4TONBn+2Gc9MbiIo70s
0R9fzJGhnf5y3+s5Yn24LIqblshQPeP6/oxpHKWQt9UJrxPzXb6Kq9KI+Yr3
9pgzU6DklRNKimM4kpKOw+PYKLBpJxNbOFFfS3lL5hFOCqwwEnl5k6h/7IGd
lL18FKip8mEwqwVH3UcHZVzIFPhswETGqh5H4icSD30RoUCxLIe7vpU4Mjtt
rbssToGDgVWzQt9w1GIxestXmgItQqNl/NNxRLZJ9azaTYF7+5P32MbjyMTJ
/jWvAgVOrklwFrzBUZ3n5Oe3qhS4YlkqkfIYR1z+GRXdahSodIu5WIfYr7qv
HNt2alIg19TkFjMbHFXEMpYzTlJgtsP6i3o9HLGk5nD/06PAF32Zp1SO4gjm
uG47ZESBEu7cGSQFHH1DMxC7QIHxn2u9uHlwtPYrz5TtMgXWFC/7qK0ykHrT
PWv9axT4RtzpTPsEAxX0LwS02FGg6zOn17crGSibebVh3J0CyV2bbRQ3BqJx
lvYrelJgnHfvzX5LBtpL9py584QC39Y8CJAyYKAUqU3h9WdE/ZpK/pEkGSj2
+JYrgtEUeMzGf/bmNzrqNqhwvhBHgR7nKRqMRDoSP/fUOzqRAk9feeY49YyO
Iqw5knZlUmBmba2V6Tk6ev2Ue+rINwp8EvdRvn+Qhhpe1q09/k6BftsjlI9U
0hBPxEu+ikoK5HZ4IMSfSkOBKfwqRg0UuCR/48OBmzTk/Yvy4HofBZIUD99y
GZtCrpwSHC+YhSC5kYV6qG4SPeA29w1gE4J+vD/5dqVNIh/eyE1fTiGoragk
kf50EoUJCi15CArB67Lmue6ak6hAjGfCeacQfLem9Prwxwm0tmetxlSb6M/U
io4cxlGgfvcr8SdCcKM5QcXh4wgKOS3OLfpUCBb0utw3eDCCoozMAijPhOBf
xy6nv3ojKMO0xYsnRAgqZ05cn5kYRg3mda4b8UIQU9S4qic7jIRulZoOYkJQ
1i5Pe3fwIIp7ESOSziQMvwx3FHtY9CL2dh7fUFZhOD7Ns0OR0YMcZTzxhyRh
eGL8G7jl1YPUvl2pMhAQhgWDXw3exnejJobkQ/p2YegOUrV6ejoRi+mHHmUg