-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhackathon.nb
847 lines (783 loc) · 29.3 KB
/
hackathon.nb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 10.1' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 158, 7]
NotebookDataLength[ 29830, 838]
NotebookOptionsPosition[ 27649, 758]
NotebookOutlinePosition[ 27985, 773]
CellTagsIndexPosition[ 27942, 770]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[BoxData[
RowBox[{
RowBox[{"f0", "[",
RowBox[{"c_", ",", "cm_"}], "]"}], ":=",
RowBox[{
RowBox[{
RowBox[{"-",
RowBox[{"(",
FractionBox["A", "2"], ")"}]}],
SuperscriptBox[
RowBox[{"(",
RowBox[{"c", "-", "cm"}], ")"}], "2"]}], "+",
RowBox[{
FractionBox["B", "4"],
SuperscriptBox[
RowBox[{"(",
RowBox[{"c", "-", "cm"}], ")"}], "4"]}], "+",
RowBox[{
FractionBox["c\[Alpha]", "4"],
SuperscriptBox[
RowBox[{"(",
RowBox[{"c", "-", "c\[Alpha]"}], ")"}], "4"]}], "+",
RowBox[{
FractionBox["c\[Beta]", "4"],
SuperscriptBox[
RowBox[{"(",
RowBox[{"c", "-", "c\[Beta]"}], ")"}], "4"]}]}]}]], "Input",
CellChangeTimes->{{3.6538235101186953`*^9, 3.6538235693585873`*^9}, {
3.653823723398912*^9, 3.653823731514265*^9}}],
Cell[BoxData[
RowBox[{
RowBox[{
RowBox[{"f0", "[", "c_", "]"}], ":=",
RowBox[{"f0", "[",
RowBox[{"c", ",", "cm"}], "]"}]}], ";"}]], "Input",
CellChangeTimes->{{3.653823739743001*^9, 3.653823763892024*^9}, {
3.653842311593669*^9, 3.653842311683853*^9}}],
Cell[BoxData[""], "Input",
CellChangeTimes->{{3.653824161552335*^9, 3.653824162623391*^9}}],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"D", "[",
RowBox[{
RowBox[{"f0", "[", "c", "]"}], ",", "c"}], "]"}]], "Input",
CellChangeTimes->{{3.653823766485682*^9, 3.653823770233392*^9}, {
3.6538238181345797`*^9, 3.653823821572095*^9}, {3.653824111184717*^9,
3.653824165377799*^9}}],
Cell[BoxData[
RowBox[{
RowBox[{
RowBox[{"-", "A"}], " ",
RowBox[{"(",
RowBox[{"c", "-", "cm"}], ")"}]}], "+",
RowBox[{"B", " ",
SuperscriptBox[
RowBox[{"(",
RowBox[{"c", "-", "cm"}], ")"}], "3"]}], "+",
RowBox[{
SuperscriptBox[
RowBox[{"(",
RowBox[{"c", "-", "c\[Alpha]"}], ")"}], "3"], " ", "c\[Alpha]"}], "+",
RowBox[{
SuperscriptBox[
RowBox[{"(",
RowBox[{"c", "-", "c\[Beta]"}], ")"}], "3"], " ",
"c\[Beta]"}]}]], "Output",
CellChangeTimes->{
3.653823770669653*^9, 3.653823822060381*^9, {3.653824115184558*^9,
3.653824135174389*^9}, 3.653824165925849*^9, 3.6538423130896797`*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"2.0", "/",
SuperscriptBox[
RowBox[{"(",
RowBox[{"0.05", "-",
RowBox[{"0.5", "*",
RowBox[{"(",
RowBox[{"0.05", "+", "0.95"}], ")"}]}]}], ")"}], "2"]}]], "Input",
CellChangeTimes->{{3.653834442747493*^9, 3.653834453421822*^9}, {
3.653834572299103*^9, 3.653834588513152*^9}}],
Cell[BoxData["9.876543209876543`"], "Output",
CellChangeTimes->{
3.653834453960339*^9, {3.653834580577421*^9, 3.653834589147697*^9}}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"2", "/",
RowBox[{"(",
RowBox[{"0.95", "-", "0.05"}], ")"}]}]], "Input",
CellChangeTimes->{{3.653834509670575*^9, 3.653834521156796*^9}}],
Cell[BoxData["2.2222222222222223`"], "Output",
CellChangeTimes->{3.6538345224602623`*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
SqrtBox["3.0"]], "Input",
CellChangeTimes->{{3.653834876859066*^9, 3.653834890525535*^9}}],
Cell[BoxData["1.7320508075688772`"], "Output",
CellChangeTimes->{{3.6538348783839912`*^9, 3.653834891037624*^9}}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Collect", "[",
RowBox[{
RowBox[{
RowBox[{"Collect", "[",
RowBox[{
RowBox[{"Expand", "[",
RowBox[{
RowBox[{
RowBox[{"-", "A"}], " ",
RowBox[{"(",
RowBox[{"c", "-", "cm"}], ")"}]}], "+",
RowBox[{"B", " ",
SuperscriptBox[
RowBox[{"(",
RowBox[{"c", "-", "cm"}], ")"}], "3"]}], "+",
RowBox[{
SuperscriptBox[
RowBox[{"(",
RowBox[{"c", "-", "c\[Alpha]"}], ")"}], "3"], " ", "c\[Alpha]"}],
"+",
RowBox[{
SuperscriptBox[
RowBox[{"(",
RowBox[{"c", "-", "c\[Beta]"}], ")"}], "3"], " ", "c\[Beta]"}]}],
"]"}], ",", "c"}], "]"}], "/.",
RowBox[{"{",
RowBox[{
RowBox[{"c", "\[Rule]", "cg"}], ",",
RowBox[{
SuperscriptBox["c", "2"], "\[Rule]",
RowBox[{"2", "cg", " ", "c"}]}], ",",
RowBox[{
SuperscriptBox["c", "3"], "\[Rule]",
RowBox[{"3", " ", "cg", " ",
SuperscriptBox["c", "2"]}]}]}], "}"}]}], ",", "cg"}], "]"}]], "Input",\
CellChangeTimes->{{3.653841846456613*^9, 3.653841854380178*^9}, {
3.653842318788604*^9, 3.653842319904943*^9}, {3.653842408931336*^9,
3.653842441730069*^9}}],
Cell[BoxData[
RowBox[{
RowBox[{"A", " ", "cm"}], "-",
RowBox[{"B", " ",
SuperscriptBox["cm", "3"]}], "-",
SuperscriptBox["c\[Alpha]", "4"], "-",
SuperscriptBox["c\[Beta]", "4"], "+",
RowBox[{"cg", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "A"}], "+",
RowBox[{"3", " ", "B", " ",
SuperscriptBox["cm", "2"]}], "+",
RowBox[{"3", " ",
SuperscriptBox["c\[Alpha]", "3"]}], "+",
RowBox[{"3", " ",
SuperscriptBox["c\[Beta]", "3"]}], "+",
RowBox[{"3", " ",
SuperscriptBox["c", "2"], " ",
RowBox[{"(",
RowBox[{"B", "+", "c\[Alpha]", "+", "c\[Beta]"}], ")"}]}], "+",
RowBox[{"2", " ", "c", " ",
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"-", "3"}], " ", "B", " ", "cm"}], "-",
RowBox[{"3", " ",
SuperscriptBox["c\[Alpha]", "2"]}], "-",
RowBox[{"3", " ",
SuperscriptBox["c\[Beta]", "2"]}]}], ")"}]}]}], ")"}]}]}]], "Output",\
CellChangeTimes->{{3.653841848373013*^9, 3.653841854707019*^9},
3.6538423208134737`*^9, {3.65384243419834*^9, 3.653842442115945*^9}}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Collect", "[",
RowBox[{
RowBox[{"D", "[",
RowBox[{
RowBox[{"Out", "[", "32", "]"}], ",", " ", "cg"}], "]"}], ",", "c"}],
"]"}]], "Input",
CellChangeTimes->{{3.653842452419663*^9, 3.653842460678625*^9}, {
3.653842495307612*^9, 3.653842501357234*^9}}],
Cell[BoxData[
RowBox[{
RowBox[{"-", "A"}], "+",
RowBox[{"3", " ", "B", " ",
SuperscriptBox["cm", "2"]}], "+",
RowBox[{"3", " ",
SuperscriptBox["c\[Alpha]", "3"]}], "+",
RowBox[{"3", " ",
SuperscriptBox["c\[Beta]", "3"]}], "+",
RowBox[{"3", " ",
SuperscriptBox["c", "2"], " ",
RowBox[{"(",
RowBox[{"B", "+", "c\[Alpha]", "+", "c\[Beta]"}], ")"}]}], "+",
RowBox[{"2", " ", "c", " ",
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"-", "3"}], " ", "B", " ", "cm"}], "-",
RowBox[{"3", " ",
SuperscriptBox["c\[Alpha]", "2"]}], "-",
RowBox[{"3", " ",
SuperscriptBox["c\[Beta]", "2"]}]}], ")"}]}]}]], "Output",
CellChangeTimes->{3.653842461980785*^9, 3.6538425017930737`*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Plot", "[",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"-",
FractionBox["2", "2"]}],
SuperscriptBox[
RowBox[{"(",
RowBox[{"c", "-", "0.5"}], ")"}], "2"]}], "+",
RowBox[{
FractionBox["9.8765", "4"],
SuperscriptBox[
RowBox[{"(",
RowBox[{"c", "-", "0.5"}], ")"}], "4"]}], "+",
RowBox[{
FractionBox["0.05", "4"],
SuperscriptBox[
RowBox[{"(",
RowBox[{"c", "-", "0.05"}], ")"}], "4"]}], "+",
RowBox[{
FractionBox["0.95", "4"],
SuperscriptBox[
RowBox[{"(",
RowBox[{"c", "-", "0.95"}], ")"}], "4"]}]}], ",",
RowBox[{"{",
RowBox[{"c", ",",
RowBox[{"-", "1"}], ",", "2"}], "}"}], ",",
RowBox[{"PlotRange", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"-", "0.1"}], ",", "1.3"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "0.1"}], ",", "0.2"}], "}"}]}], "}"}]}], ",",
RowBox[{"AxesOrigin", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"-", "0.1"}], ",",
RowBox[{"-", "0.1"}]}], "}"}]}], ",",
RowBox[{"TicksStyle", "\[Rule]",
RowBox[{"Directive", "[",
RowBox[{"Black", ",", "25"}], "]"}]}], ",",
RowBox[{"AxesLabel", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"Style", "[",
RowBox[{"\"\<c\>\"", ",",
RowBox[{"FontFamily", "\[Rule]", "\"\<Latin Modern Roman\>\""}], ",",
RowBox[{"FontColor", "\[Rule]", "Black"}], ",",
RowBox[{"FontSize", "\[Rule]", "30"}]}], "]"}], ",",
RowBox[{"Style", "[",
RowBox[{"\"\<\!\(\*SubscriptBox[\(f\), \(0\)]\)\>\"", ",",
RowBox[{"FontFamily", "\[Rule]", "\"\<Latin Modern Roman\>\""}], ",",
RowBox[{"FontColor", "\[Rule]", "Black"}], ",",
RowBox[{"FontSize", "\[Rule]", "30"}]}], "]"}]}], "}"}]}], ",",
RowBox[{"PlotStyle", "\[Rule]",
RowBox[{"Directive", "[",
RowBox[{"Blue", ",",
RowBox[{"Thickness", "[", "0.008", "]"}]}], "]"}]}]}], "]"}]], "Input",
CellChangeTimes->{{3.653847463594195*^9, 3.6538475797031*^9}, {
3.6538476207145844`*^9, 3.653847659884207*^9}, {3.653876039177372*^9,
3.6538761046711197`*^9}, {3.653876157609446*^9, 3.65387626195851*^9}}],
Cell[BoxData[
GraphicsBox[{{}, {},
{RGBColor[0, 0, 1], Thickness[0.008], Opacity[1.], LineBox[CompressedData["
1:eJw1mXc4lu/7x5GKplRSSaikKMpsvqUlUshu0FAUeqxSkr33KkSTrLI9j1Eu
K9n7Y2+pjOcxEkXld3//+N3/3Mf7OK/rPF/3eb2P8ziu4xa+dlfTmIONja2C
nY3tf28eK+l7evMZJCryf08FKv37Mqs100mFSPrGjD3lMPIpCAyLTiL789kD
ls+XQu3qUSVOgSTyOjIvNqyyFAcVCqatnyUSg4RkmEeVYt3Xj/oXohII/zXz
quWHSvH52MdtvBFvSRxkin86lmDv73xGYOhrUizFaj3AX4yZOiuyfn04Wej+
FtHNRuB3tlr0zI4wElAY8WiYUQDhih0Bj2RDicyYwIm7dwtwtrjt0qB2MAkP
PfXqa+9HKJk6TF/d40vkRtOC75d9gJTx7mapq3akP1e1Ky8xDx8O5ifNlTtD
SCNuMvwTHcHHuLpCE1xR/O1XzZwPHTeVtVfu8XJHSqXwoip1OtbojN81PO2N
jJ+5mcnd2cjMCd40cC0IarMWnVf/ZIGr+VPvqf6nkNskpA21TOgv3iDLdfcN
VDj/FeYeSEOb2Nz1tZNvUNwxQhqWpkHvbHeIoHUsWgp3RKa+S4Ve6JsJmftx
OKET1qU7nAI9Yal3Vx3jce7ckrlKs/fQOXJmW35gMsbsDabOP0tCi5GEZtma
d5BbsZa/5EQSdNxWOzeEvkPfj8lg9vFEaFf91/Pt6XtcYmhc7zqZCC39a1Hr
XqaClXC2ZOxPPBLzPnLJt6VjxmHtvbDAOJiclXx5eGMGROhhV5VOxkGs56W8
kkEGqm/N3Uiej0UCu9tNta4M9KQaM5JuU1pZpfR6XyYqZcpLlTTeIL6lxTHo
ezaMIm5u+oNXuGmivOHJLjpEah9tGmJ7BdG53JRnt+kIKT/u/KD4Jd5uiel+
O0YH26qoxJenKX3j+qGPEwwockfteJb5HHFT4zPDv3Jxo8buZ+SBZ6DzVPlH
yeZheu9q1emWKJTtfbtd1SoPbDxmf67YRuH77Uua70bzcPbgQRPD7EhIDJa/
t+jJx4qZKJWBYxHIanp140fJR3COxoi89g3Hp8lH82/YCsApKE8/dyAcLav1
QrSOUD7yQdePb2H4pbqqMJteAKPf25aJKIfhcOnDzXaJBALsa04OrQ3FtY5d
po8/F+Jdb0lSaWsQbps+zWoZKkRzHDufWlgQrH9xsklyFuHP9TtbGBpBcOPr
e9KrWAQ7082FWs8D8VbzSaliXhGCFvzmqxP8kdK/iCeyjdJvUjYnSvqDQbO8
ODlTBOU5aYH9OX4oDzg79Uq6GOWRpemo9cVIJYfQovfFUDZo3P9npQ+m9Gl3
LlYVQ0/m4rmpV96Y/95NzxwuhoJH90VHeW+sWJqrdkO0BEbmLJsLt7yw9/hd
+08vSiC17MG6iHYPWOZ3tniGlMJuXETg8BI3jCkxDUwzS5Fg9qvcPNkVJpX/
elSaS6HMZjajoumKK+3C31byfYLYxpWBc7EuUJm9NRsa+Qk8kW/0Gy8749Pj
B/a2eZ+gbDcWs4jHGYpLfBd0Oj+BXz5lfVmJE+TWpyzdtKUMfaqHYiclnSAi
Pb3h5csyqJNTeWtkHyMmb3G0c1EZXvb1RzamO4BfaYPQ9YEyFNoLm7rsc8Aq
jYNiots/Q+iNimX4gUeYs3BSeBf/GUa93Nfa7jyE7UzwB//yz5A6ntdmuPAA
Ew5vFO8Of0Y9Bxl5E/4AX/3KlPeLl4MtlW3lmUo7NCWt0M9JoeYa68Vjgwv3
cW6/YHdkXTn6Mg2+bPxzD5W5klftJ8qh2MeXdSP+HgrLNU2P7q8Az0a1826L
7+GQ+g3m1gsVKOxlX6yWYwt6q60luw0Vd97z28vcFu++Rjwoza6Akeq1N0q9
NthpkfQ3rqUCUk2LTbKe2eD1z3xnz1lKT2t5ORvYIIKz11vlQCXYlPaK8/Va
w01kR1T9h0pI6U+LuC2yxkKinGBGdyXqjyvXijda4eE+5deh/yrBIzI+vPDa
CjTFO0k6ilUQChjT5FO1wujnR3sVrlZB/fafzWoiVrh5PiBjo0sVjFoazkbO
W+LSlfS8rpIqpDkcX30xyxKtQ8VHC75UYSL5l+KnUEtomjcXv1hcDZp63Ka9
tpaomR465SxaDaHyzNlAPUsoP5qtvHa6GurGmxSGjliiZBH3+RMm1ag3v6go
tsMSR303Ne3wrkabgPuDC6sskccrobs0qRpGr/dpXP1Ng2zUkc7vldUUv+eB
s19piP6VILBvtBoJ+yJbDP6jgUN33ZUHy2vQN65bsLuMBtNsxxdF4jWoV5zJ
p+fQUL92tI/7bA2cXPqe/35Hg7yVjoimWQ0UfD8cZL2m4Xl90fUovxqYJJne
CoyiYbHknriBdzXgSmRjbwulwcw/4uvuGkqXN30rDqChaXSRmDWzBgnFFmyq
vjQcVLlrmr+yFkLVT6TveNPwKqEjadFeSgerWAhSmmvpqTHVc7Wwky9+ZehD
w13j9D1hFrVIuHy3ZJc/DS0lAne7Aqj45r/V94NpOCLilbY9tRZp7OofTjyl
Idbpx6RZXS34N3mE+j6nYXnvFens8VqIfZvROx1Pg9WRSpu/q+swcUN6g3U6
De3PZOknperAw7Wkm/sjDYpzL2f91etAK7D6uKSShni9FQdaaHXoY9HrbrTR
sIpx/6FgMLX+wRnJrd9p6LI+9zeloQ78dlr64cstcbwx9+jsZB2cuDvunt5q
Ce0I3sKt3PVw2lt+R0nGEh9mHNhNdtUj7QWtY+GqJSbipEX8DtSjr35Rfs5D
S2zTHlZKO1MPL8P0S/FhlvDJ1HL7ZVqPiBB3Jm+1JQquLYsTeFiPiUF1M49h
S0yuKfyk6FMPLqZjlQCXFfRo4ku9k6j9mZV2L5StILqHw2fjKBW/PfHsYYsV
DLoYSUfmKe28faXrHyv4+5pXXV3eAIXs9Sbe26wxPdy2Ikm8AeUiQmkONtYo
fpsaeNCsAYrn/5z2ELbBjLZx2pVHDUg4lJKwcM4GuxZvbnDxa0DbaPOyCw42
CLruwVv1rgFiN19K3uuywRWhy+EXmQ3gH3xpJh1ri9+Ry549smgE14abAiXa
96H4Lsre16ERE2eeSs373IdXwe5LUX6N1Lxd5ZRdeJ/ap7IlJ6kR6odl9d7s
sYO8hO+LH1+p9d1XtJasfADbguWxtw2boD7RIL209yEmB1a811NvRunAvzM+
uY+h8DPa/5ZhM84ui6slvx7Daekei3sWzUgYVBpco+AIHgk1yTC/ZtS3Xele
oDtC0tY/va68Gesk/XTbDJxgvnQV/dSx/1D7XtaPpe+MYfHVRGZ/Cx4F6JD+
8664fXDykJdSC1gPgrP5LF0xptyU06nZgsMt7BvFQlzBMn6a4WLdAnXXTTHt
Ta6YerH1bX1WC3KSBNVUtN0wt1bK30y+FW4q63csnHOHvQjvssLTrUhZI6xy
yNwdf6SmPdbqtWKmQDrzoK87/qnlOOXZtYLvlYuWQ5k7OLwUbbjyWuH3dYfx
9wMeWP5H/WLs4TZk13j5rFnrCb9l0m2zZ9sgVyHW1yjhiVUb12urXm6DJTPc
Q/GUJ3jk2s9NObShLMdUZ7OdJ9bRriopkjao7iixTGz1RPjj4yS0rg3CjoIp
8SxP8PnvOPyttw0L40Phpxd7gT9pWDaArR13crlxa58XBL5Y7uo61o7k7291
ONy9EDN14a2kZju0To8eGYnwgiC73DbXa+3I6WHkmL7zgpDgnMBu13ZM//jl
sbvRC9v1XHjsStsRPqzZHMzvjbibN/yrmttxKeDpk3W7vCFqe2rZ1qF2jBX+
vbrjgDfEQpZxli3uAOL+2I3pemNPdcjs2tMdWF2/f2gi0BvFR87LaOp04Lzz
ZUHWM2/opS63DDLuwLYAtQNO8d5wCXEbWeFGrVd65G/40Rv8nMd2qoZ2UPPG
fGnyZ2+8t/173ft1B7o+en3xbPBGm9697sVFHZBYLnhpatAb5pX7N52o70Ai
V/6Jx2Pe4Dg8ruPS2wHNO+USEdPeiHifHFrI6sD6MR/gD8W31aT+398OnND9
mWi1yAfFQdtXHlnZiZd+CVH7lvlAj6P/jL1AJzwcfxyz5/EB0zrGI1e8E2ly
TQ3n+HzgMqRfMnuwEzrVUw7Jm33Ar8vHJqfSCTmLZPsgIR+8L288bKPfCZ/L
nBx/t/tA6WDggwyTTrBYGWcmxHzQlqxKn7jfiWCfTf6mEj4w38L1Y69nJ/jf
neUykfQBR2CppPmTTgQMcP0e2eeDCDZns+S4Tjyr//B8UtoHe6yOJA5ndeKU
hNtBe1mKf/D30M7STqwiYqs95Sh+bbrIzaZOcNwUubpOnuIvszKMHejE8zVP
74lQ2kVBMnpgshPNnwyeplHr+ZNG24TYuyAYNb6igMr3fnPCekOeLlzPdRdR
kaH4/W9oxmztwsLV+e1a+yn+f0KBnXu70D/Uda2T4jWndVdtPNqFq0k3JHqp
7+EYiOTSU+vCKTH7piu7KP4LOiefXOrC+Cg9WX8Hxf+J16X5The2hF9aVkf1
q1iuroDXvgurWq+cKqD6qZfgO6/u0wUPuys5olS/mRuVFQIju/DhQlLeUuo8
XHw5bWsSumCgg0Qjbor/b2H68pwuBDiX90txUPwWDqwzn7uwZOR5yf05yi8a
M7fKhroQLfqP69Yw5ZeSjFjOn1244/5CelUf5RfZu/1KnN1okiPhu1oof/B/
NyAi3WB32PEqr5Dyr3fs07/7unFG4aegZDbl33mj5kPHuiEcqu2wPpHyb0+7
Wo5hN+pUtJ/KUn7nV3/iM2PRjQlTloyFM+XfIs3PMo+7ofx++X0+a4ontkox
Pbobt+cVSaYWxcPn5TCe3A29GyVZ8ScoHq8TeXvyu5H3/vkebhmK585H6aT2
blyxSY3iXUPV25cq+oavB9rr7fX3lXrBP4C/OGxHD/gM4j6OpXohYtT5sodM
D7K1DQI3PPNCapxWmKlmD/4KB33MveuFro1z7FIBPVhz4cSd7bxe+Hbveoxw
TA/GYtl0z//2xFRTtcLadz2YOPDr0tdeT3AHvLg7U9GDnjRzcd1kT8hxnOz+
sLgXBp1iWgcOeeKYYYpdyrpeGF+N9Mrb4omzHzase7mtF3WXTn+LXfDA9Xsj
Kq7HeiG6rL08s8gDQSOBOWcceuG7Qmwu7agHRhs7Qlume/GeJG0Y2uyO+Q2v
N3xh70Nan6Bv07QbnMt0hi5x9+FYTYWVaI0b/LYVOp3j78PFxaHxv+zd8KY7
hLFPrg+PlF0PKTe6ol5DYccvyz7ctGWWG191gQ4bc4r2oA8fFvsVOEu5oDPl
VeGwUx9cz79a+PfPGV+XL7/UGdgHq3T1eoEoZ/z91B1S8L4PDoEBs/3lTth9
0JXNfbgPvNkjb3/wPEb1VyOBl5N9CJGISZYIdoBF6FGF/N99yC+8rT222gGZ
Y7/vTnL34zk/XXCB6xEOv6D1Xt7dD/aH13fQhh/gHOeVArk7/SgLGOGyv26L
ibRDHRrW/bh+oI9zY7UNQi5vnDGz74eGz6aMI9I2aKU373nj2w+2Yz25m/9a
wchUNWb1u34UsL69knSkwbpW4dH3sX54qybzdj24CT57vohFP/vhLK47t03A
GDk7pzMF//Yj9f3kT+f86/jjlDqqtXIA9mYHXFwnjeAhLXqxaM8A/I4tuJjZ
6iAiYu3BKIsB6j7abtEZv4F8uMaaVZ0YgEXFlsbImtvku2KuddfsAPzLvi35
bGJG1m91GzdbGID2sQdaekssiEXnxm/+qwbRo8/rqh5LI0JaJ1vqJAZRfXHk
Z+20NXE9GZ11wXQQQnzutV9qHhIVMRXLiwODODdvdWbsnRtpZcaN3G7+gscZ
3GxaN0OIUGVkVkzXFwznmhcEpYWQ22/9H9d/+QL55JqTa+ZDCHVp5pX7+QXB
R0ISOoNCiVD9iYPsfEM40ZJ4zpOEEZOMQe+nukNwyD08USz2lMzdE95V2jGE
xWs4N7SKRhMBtphbW/q/Qsjlp+5q3Tdkq/O+vENfvkPXuohPbUMKSeE0Df04
+h2hMpHdrUdTyGGvl2b48R36R8+4at9MIXqBq7ce5xjG+jSpip3ZKSQohumq
IjSMmU5WnoBmKuHIS1TTvzQMsbZzN2xPpJGhKeH+e83DWDdtkeprnU5s7unn
/eocxpznci4+j3TCMRcU+nBwGDbdT76FRKQTQXa2U4+nhqEbJK5x/WM60Vnd
k+TOMwIdtw0X9ZZkkHLxKJuwsyNw9FRcZhieQZJv8HJllI5gdPzE/f1vM4nO
VyvJluoRfCiL4JxjZBI2kyadueYRRCVej0uooOJ3wuKUhkZQ6ybUkjuWSTis
+I43LR7FvzSZltf7soie46bH06dG0VO22v4kPYssYreP4z8/itpX8d06ZVkk
xaWz+rDuKC4YL12q0pJFOD2iN7vfGkXAvqsazT+zSKqfYO56r1Hck2WTuCud
TZZEiUzLVYxiwlPnPC0hm6Rvdt18sWEUc0c1U23o2eRSzKCSY/soIraZHtcu
peIvY4M/D49i47PkyMReKh4vKqm3bAw59d6jYevoJDNr9+0HqmPwSZSP336f
Tq7I+QbHXBjDzLPu6kIXOuHKGc0pujiGm6bTatIBVDz/3dJlZmNg084ZiIyl
k2XFe+Oi/MZgIr294lodnRjV7e/LrxlDGN9BhQABBgl3cbql/d8YmFWhKTXb
GaRStpbF6hpD4ZN530EJBpGJNv0rPDaGaLVU2eDDDMJl+nKT1zImmuUF1Eb1
GeSIAOuVMC8Thk/qFv9nxCBWdYd25W9k4r+F56EhtxikS7ZVniXGRO3O+H5P
GwZJ41ilrXWaCf0VGsKafgwylH2xi3mOifNcalcaghlkk2nidU8dJlKSdzUI
P2UQt7oTVnnGTDjSfnLKvmKQXJeQ3xfMmTD+9XTzbByDsGT7nJg2TEROO6/1
TmIQvWj7QCE3JnzsVdQ3ZzKI//kKvjxfJqKPSQ9vYjBIMceG5xdCmYidur98
OI9BZrNv7GBGMdFaG2HkXsAgEqYZ7zxeM7Ew0Rc8XsQgVwXYZISSmPA6d1N5
5ycGeVKnlp+bzoQtg3uPRDmDLMgOV4wVUvmktm+LrqH6NSyn4VHOxN8dF9yX
1DOISbRb29Z6JpgTqxmHGxkk5nyjYW4rEx5v9xkdbWaQRg6hb5q9TNyTMxBb
3sIgS+nmFmNfmVhxZ4b+upVBDpvm/3RnMSE+fCSTs51BLAW4HbbOMGEgJV0q
1cEgb+t0OHP/MpET9SZItJNBOl1ifTUXs/Dv0k4yRGkeuSnesRUs+HkIz5h3
McjJYUS5r2NBnb2ws4DSD6P9hbcKsNATPL++jdKp5zsTcraxcKP1qUoupb9w
7JLSFGchUXXb1muU3ki/xxjdz8K647MKjVT+c6alR90PsvB2TP4IN6VdBXjL
BJVYYNNsrl9C8eXUGarlnGHhoq5HRGUbgzBd3jdraLDgm9+ooEV9n4jc/MVR
PRaW8nPrvPmPQXSHlQfdjFjo7DsexmhiEL/oJ7cFTVjIvGHyNKiBQYrOf5lk
3GWhrVp00d46Bpnh2P9A4z4LklvmHgZWM4g43ZFt9DELMjJir7MqGMTItMbT
zYPKX1W0OaaM8rvA5tWCASwY2r72US6h/F5n8oQRzkLwK1ownVDn6ULfohFD
9SsipvFrPnWecpxxI7EsDDgYT7RR/nke/SJzSxbF9/XdGfZUBgn4dHwkKJ8F
bm0+//OU/x6zvglxlrDw5XFnmhHlzyuKUgEjDSyEt6ySqYz6X7+aSy+3s/BB
Qa1POJxBjobYzdf3sSBBPJccCmQQwS+FJoxxFvg+2OqluTDIqpXGL3bPsjBD
aHXLHzHIP1nulph/LExxzOrstGWQHk+N424rxxFgzy8Rc5Pyl/jAFg3xcUgL
bPzx4BTVPy0PrdL94+gIlJyuOsIgjxx2+8ofHEdlQP6uThkGuVRn9WvLmXEc
LXcrlBRhEAHrRU0jN8cxUH3hXvxvOlkRHc99xWIcN+qHfrax6ORPqapig+04
BG1CikoH6aSLL+w9w20cOlGmnyqq6SQ6b7uX2+txtJeE7XF8Rid+g+UFs4nj
UP/Y9tGOmk+PVpj/vJ0+jgyZp3G7nOnk0pXsaxqF43i5EPA31ZhOBDhOHRHs
Gcc30b+aJ8Sp+uIj1sFD47AsXtjG2kzVvxCQxMmk8rk8VT27gqof17JhdH4c
LNm7m7aPZZPaWOnfnSsmwFI1Wi1Pzd9Tue5h4TwTeGPPOW73JJsU1LRKnl83
ge6ja/nN3LJJyoz9zeLNE9iWLPfhhmE2CVAubUrYPYHanOMPw9ZkE7UxrRRb
5Qn4buuNfHIzizQ75tOczk6AO760p1wtixisFZH2VZ/Af92mPE9lssjNg+OM
l3oT2G9itX8xexZx8vIuqjKZAPMh795N4ZkkY3tBs7D3BBqH/nBlJWYQhZzt
TyX8J8Ax3Zt8yyeDFKj66ssHT0DUKfFfyu0MUmWl13M2cgKCkmbPZnZlkC+F
U9/uJ1L7xfbPGrxJJ3yXd87XVFBxDz83duc0Ej3h/7GtZgKhzS65aQZpRMRt
2nGwYQKeTQ+3jEqnEcnkIs7f7RM4Kd0Y/K8ilSj/vrhq+8gERh7q/xJ3TSH2
4UHCD5dNQp9/up6zPJn01fw+Lao6iW0Z+5eNhcYRiTmdvNFzk6g5XVUhLxlH
7otmSaRrTqL9pdqByIpYssrRYs1hg0mI87aaR86/IYekBjs0TCfB9bX/n43W
a/IkpNrcwXMSp0al533TY8hAwa4+Jd9J6t6vu/NXRTTZM+qhyRU4iYIz69ws
+56R0uPH5EOfTMLnuu5Ot6VRZHI6my0xbhIKn9rP/zjyhJzVfRHaXDKJPdrG
2UFhfiTC9c/iqM+TOFFqeFvR3YcMpurbGVZNIiU/xL3a0os85Fp3eaRxEjbJ
DvK3j7qR+FwvUbaBSeQNaRlEqdwnHAJWueJsU5jZYLt38y1TMPpO9LocnkKG
2R1hetMT8PjR7SIVp7BfBSrPj0TgtrwYb9qJKRjzqE8qJkVCMGD5ye6zU5Cy
r1Ms9I2G26HGJPnLU8huWmv6S/4VNJ8Y3htzmAJn5x9jumE8mKoPV+qQKWxJ
lv9ocj0Dp2ZH35qVTIG5rkWZ478MvHx9WdH18xQm5Xm5jU5nQuu3onVa3RTC
PieM3d6bhby3S9uX9VE8LWVZDYvp8GIPjyVsPxCpJ9Xi2JGLbYzUQ7uUfkB1
vjtdjKcISvMb3OdO/gCRF9I9qVEEIzjVVp35gbuyLOOikCI8/6x+1ULjB6y3
Xhpv4yvGxrZJj0yjHwhSzWAP2FaC1b+lG484/kDZubR/muc/IW6Jc3kh4wf+
///j/wG0SHQK
"]]}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{
FormBox[
StyleBox[
"\"c\"", FontFamily -> "Latin Modern Roman", FontColor -> GrayLevel[0],
FontSize -> 30, StripOnInput -> False], TraditionalForm],
FormBox[
StyleBox[
"\"\\!\\(\\*SubscriptBox[\\(f\\), \\(0\\)]\\)\"", FontFamily ->
"Latin Modern Roman", FontColor -> GrayLevel[0], FontSize -> 30,
StripOnInput -> False], TraditionalForm]},
AxesOrigin->{-0.1, -0.1},
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
ImageSize->{1102., Automatic},
Method->{
"DefaultBoundaryStyle" -> Automatic, "DefaultMeshStyle" ->
AbsolutePointSize[6], "ScalingFunctions" -> None},
PlotRange->{{-0.1, 1.3}, {-0.1, 0.2}},
PlotRangeClipping->True,
PlotRangePadding->{{0, 0}, {0, 0}},
Ticks->{Automatic, Automatic},
TicksStyle->Directive[
GrayLevel[0], 25]]], "Output",
CellChangeTimes->{
3.653876055642192*^9, {3.653876101560207*^9, 3.653876105052464*^9}, {
3.653876158704114*^9, 3.6538762628057413`*^9}}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
SqrtBox["233."]], "Input",
CellChangeTimes->{{3.653868043669976*^9, 3.653868046077292*^9}}],
Cell[BoxData["15.264337522473747`"], "Output",
CellChangeTimes->{3.653868046411483*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
SqrtBox["239."]], "Input",
CellChangeTimes->{{3.653868075048697*^9, 3.653868076899741*^9}}],
Cell[BoxData["15.459624833740307`"], "Output",
CellChangeTimes->{3.653868077203293*^9}]
}, Open ]],
Cell[BoxData[
RowBox[{
RowBox[{"f1", "[", "c_", "]"}], ":=",
RowBox[{
RowBox[{
RowBox[{"-",
FractionBox["A", "2"]}],
SuperscriptBox[
RowBox[{"(",
RowBox[{"c", "-", "cm"}], ")"}], "2"]}], "+",
RowBox[{
FractionBox["B", "4"],
SuperscriptBox[
RowBox[{"(",
RowBox[{"c", "-", "cm"}], ")"}], "4"]}], "+",
RowBox[{
FractionBox["Da", "4"],
SuperscriptBox[
RowBox[{"(",
RowBox[{"c", "-", "ca"}], ")"}], "4"]}], "+",
RowBox[{
FractionBox["Db", "4"],
SuperscriptBox[
RowBox[{"(",
RowBox[{"c", "-", "cb"}], ")"}], "4"]}]}]}]], "Input",
CellChangeTimes->{{3.65387008397934*^9, 3.653870128468383*^9}}],
Cell[BoxData[
RowBox[{
RowBox[{"f2", "[",
RowBox[{"c_", ",", "\[Eta]_"}], "]"}], ":=",
RowBox[{
RowBox[{
RowBox[{"-",
FractionBox["\[Gamma]", "2"]}],
SuperscriptBox[
RowBox[{"(",
RowBox[{"c", "-", "ca"}], ")"}], "2"],
SuperscriptBox["\[Eta]", "2"]}], "+",
RowBox[{
FractionBox["\[Beta]", "4"],
SuperscriptBox["\[Eta]", "4"]}]}]}]], "Input",
CellChangeTimes->{{3.653870133680825*^9, 3.653870223087831*^9}}],
Cell[BoxData[
RowBox[{
RowBox[{"f3", "[",
RowBox[{"\[Eta]i_", ",", "\[Eta]j_"}], "]"}], ":=",
RowBox[{
FractionBox["\[Epsilon]", "2"],
SuperscriptBox["\[Eta]i", "2"],
SuperscriptBox["\[Eta]j", "2"]}]}]], "Input",
CellChangeTimes->{{3.6538702254213123`*^9, 3.653870262429798*^9}}],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"D", "[",
RowBox[{
RowBox[{"f1", "[", "c", "]"}], ",", "c"}], "]"}]], "Input",
CellChangeTimes->{{3.653870282493804*^9, 3.6538703053774643`*^9}, {
3.6538703555796833`*^9, 3.65387038510212*^9}}],
Cell[BoxData[
RowBox[{
RowBox[{
RowBox[{"-", "A"}], " ",
RowBox[{"(",
RowBox[{"c", "-", "cm"}], ")"}]}], "+",
RowBox[{"B", " ",
SuperscriptBox[
RowBox[{"(",
RowBox[{"c", "-", "cm"}], ")"}], "3"]}], "+",
RowBox[{
SuperscriptBox[
RowBox[{"(",
RowBox[{"c", "-", "ca"}], ")"}], "3"], " ", "Da"}], "+",
RowBox[{
SuperscriptBox[
RowBox[{"(",
RowBox[{"c", "-", "cb"}], ")"}], "3"], " ", "Db"}]}]], "Output",
CellChangeTimes->{
3.6538703057071457`*^9, {3.6538703578417*^9, 3.65387038568128*^9}}]
}, Open ]],
Cell[BoxData[
RowBox[{
RowBox[{"\[Eta]vec", " ", "=", " ",
RowBox[{"{",
RowBox[{
"\[Eta]1", ",", "\[Eta]2", ",", "\[Eta]3", ",", "\[Eta]4", ",", "\[Eta]5",
",", "\[Eta]6", ",", "\[Eta]7", ",", "\[Eta]8", ",", "\[Eta]9", ",",
"\[Eta]10"}], "}"}]}], ";"}]], "Input",
CellChangeTimes->{{3.653870399881002*^9, 3.6538704203552227`*^9}}],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Simplify", "[",
RowBox[{"Sum", "[",
RowBox[{
RowBox[{"D", "[",
RowBox[{
RowBox[{"f2", "[",
RowBox[{"c", ",",
RowBox[{"\[Eta]vec", "[",
RowBox[{"[", "j", "]"}], "]"}]}], "]"}], ",", "c"}], "]"}], ",",
RowBox[{"{",
RowBox[{"j", ",", "1", ",", "10"}], "}"}]}], "]"}], "]"}]], "Input",
CellChangeTimes->{{3.653870309840004*^9, 3.653870315726512*^9}, {
3.6538704238021593`*^9, 3.653870447510371*^9}}],
Cell[BoxData[
RowBox[{
RowBox[{"-",
RowBox[{"(",
RowBox[{"c", "-", "ca"}], ")"}]}], " ", "\[Gamma]", " ",
RowBox[{"(",
RowBox[{
SuperscriptBox["\[Eta]1", "2"], "+",
SuperscriptBox["\[Eta]10", "2"], "+",
SuperscriptBox["\[Eta]2", "2"], "+",
SuperscriptBox["\[Eta]3", "2"], "+",
SuperscriptBox["\[Eta]4", "2"], "+",
SuperscriptBox["\[Eta]5", "2"], "+",
SuperscriptBox["\[Eta]6", "2"], "+",
SuperscriptBox["\[Eta]7", "2"], "+",
SuperscriptBox["\[Eta]8", "2"], "+",
SuperscriptBox["\[Eta]9", "2"]}], ")"}]}]], "Output",
CellChangeTimes->{{3.653870310613106*^9, 3.653870316309518*^9}, {
3.653870435078874*^9, 3.653870447830509*^9}}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"\[Gamma]", " ", "=", " ",
RowBox[{"2", "/",
SuperscriptBox[
RowBox[{"(",
RowBox[{"0.05", "-", "0.95"}], ")"}], "2"]}]}]], "Input",
CellChangeTimes->{{3.653872333111744*^9, 3.6538723333029537`*^9}, {
3.653877292311969*^9, 3.653877302713272*^9}}],
Cell[BoxData["2.469135802469136`"], "Output",
CellChangeTimes->{3.65387730315536*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Table", "[",
RowBox[{
SqrtBox[
RowBox[{"23.", "+", "i"}]], ",",
RowBox[{"{",
RowBox[{"i", ",", "1", ",", "10", ",", "1"}], "}"}]}], "]"}]], "Input",
CellChangeTimes->{{3.653877828288897*^9, 3.653877845265348*^9}}],
Cell[BoxData[
RowBox[{"{",
RowBox[{
"4.898979485566356`", ",", "5.`", ",", "5.0990195135927845`", ",",
"5.196152422706632`", ",", "5.291502622129181`", ",", "5.385164807134504`",
",", "5.477225575051661`", ",", "5.5677643628300215`", ",",
"5.656854249492381`", ",", "5.744562646538029`"}], "}"}]], "Output",
CellChangeTimes->{{3.653877843048731*^9, 3.653877845687652*^9}}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Table", "[",
RowBox[{
SqrtBox[
RowBox[{"149.", "+", "i"}]], ",",
RowBox[{"{",
RowBox[{"i", ",", "1", ",", "10", ",", "1"}], "}"}]}], "]"}]], "Input",
CellChangeTimes->{{3.65387787093281*^9, 3.653877872402935*^9}}],
Cell[BoxData[
RowBox[{"{",
RowBox[{
"12.24744871391589`", ",", "12.288205727444508`", ",",
"12.328828005937952`", ",", "12.36931687685298`", ",",
"12.409673645990857`", ",", "12.449899597988733`", ",",
"12.489995996796797`", ",", "12.529964086141668`", ",",
"12.569805089976535`", ",", "12.609520212918492`"}], "}"}]], "Output",
CellChangeTimes->{3.6538778729608097`*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Solve", "[",
RowBox[{
RowBox[{
FractionBox["320", "x"], "\[Equal]", "15."}], ",", "x"}], "]"}]], "Input",\
CellChangeTimes->{{3.6539573361169767`*^9, 3.653957352326726*^9}}],
Cell[BoxData[
RowBox[{
StyleBox[
RowBox[{"Solve", "::", "ratnz"}], "MessageName"],
RowBox[{
":", " "}], "\<\"Solve was unable to solve the system with inexact \
coefficients. The answer was obtained by solving a corresponding exact system \
and numericizing the result. \\!\\(\\*ButtonBox[\\\"\[RightSkeleton]\\\", \
ButtonStyle->\\\"Link\\\", ButtonFrame->None, \
ButtonData:>\\\"paclet:ref/Solve\\\", ButtonNote -> \
\\\"Solve::ratnz\\\"]\\)\"\>"}]], "Message", "MSG",
CellChangeTimes->{3.653957352813648*^9}],
Cell[BoxData[
RowBox[{"{",
RowBox[{"{",
RowBox[{"x", "\[Rule]", "21.333333333333332`"}], "}"}], "}"}]], "Output",
CellChangeTimes->{{3.653957350284733*^9, 3.653957352817236*^9}}]
}, Open ]]
},
WindowSize->{1855, 1056},
WindowMargins->{{-7, Automatic}, {Automatic, 0}},
FrontEndVersion->"10.1 for Linux x86 (64-bit) (March 23, 2015)",
StyleDefinitions->"Default.nb"
]
(* End of Notebook Content *)
(* Internal cache information *)
(*CellTagsOutline
CellTagsIndex->{}
*)
(*CellTagsIndex
CellTagsIndex->{}
*)
(*NotebookFileOutline
Notebook[{
Cell[558, 20, 832, 28, 55, "Input"],
Cell[1393, 50, 270, 7, 32, "Input"],
Cell[1666, 59, 92, 1, 32, "Input"],
Cell[CellGroupData[{
Cell[1783, 64, 273, 6, 32, "Input"],
Cell[2059, 72, 657, 21, 34, "Output"]
}, Open ]],
Cell[CellGroupData[{
Cell[2753, 98, 331, 9, 37, "Input"],
Cell[3087, 109, 136, 2, 32, "Output"]
}, Open ]],
Cell[CellGroupData[{
Cell[3260, 116, 168, 4, 32, "Input"],
Cell[3431, 122, 90, 1, 32, "Output"]
}, Open ]],
Cell[CellGroupData[{
Cell[3558, 128, 106, 2, 39, "Input"],
Cell[3667, 132, 114, 1, 32, "Output"]
}, Open ]],
Cell[CellGroupData[{
Cell[3818, 138, 1277, 39, 37, "Input"],
Cell[5098, 179, 1124, 32, 37, "Output"]
}, Open ]],
Cell[CellGroupData[{
Cell[6259, 216, 295, 8, 32, "Input"],
Cell[6557, 226, 750, 22, 37, "Output"]
}, Open ]],
Cell[CellGroupData[{
Cell[7344, 253, 2304, 66, 111, "Input"],
Cell[9651, 321, 10881, 193, 713, "Output"]
}, Open ]],
Cell[CellGroupData[{
Cell[20569, 519, 107, 2, 39, "Input"],
Cell[20679, 523, 88, 1, 32, "Output"]
}, Open ]],
Cell[CellGroupData[{
Cell[20804, 529, 107, 2, 39, "Input"],
Cell[20914, 533, 88, 1, 32, "Output"]
}, Open ]],
Cell[21017, 537, 699, 25, 56, "Input"],
Cell[21719, 564, 464, 15, 54, "Input"],
Cell[22186, 581, 301, 8, 52, "Input"],
Cell[CellGroupData[{
Cell[22512, 593, 225, 5, 32, "Input"],
Cell[22740, 600, 554, 19, 34, "Output"]
}, Open ]],
Cell[23309, 622, 360, 8, 32, "Input"],
Cell[CellGroupData[{
Cell[23694, 634, 483, 13, 32, "Input"],
Cell[24180, 649, 698, 18, 37, "Output"]
}, Open ]],
Cell[CellGroupData[{
Cell[24915, 672, 288, 7, 37, "Input"],
Cell[25206, 681, 86, 1, 32, "Output"]
}, Open ]],
Cell[CellGroupData[{
Cell[25329, 687, 257, 7, 45, "Input"],
Cell[25589, 696, 391, 7, 32, "Output"]
}, Open ]],
Cell[CellGroupData[{
Cell[26017, 708, 257, 7, 45, "Input"],
Cell[26277, 717, 394, 8, 32, "Output"]
}, Open ]],
Cell[CellGroupData[{
Cell[26708, 730, 209, 6, 56, "Input"],
Cell[26920, 738, 523, 11, 23, "Message"],
Cell[27446, 751, 187, 4, 32, "Output"]
}, Open ]]
}
]
*)
(* End of internal cache information *)