-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathday22.rs
224 lines (182 loc) · 7.8 KB
/
day22.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
//! # Monkey Market
//!
//! Solves both parts simultaneously, parallelizing the work over multiple threads since
//! each secret number is independent. The process of generating the next secret number is a
//! [linear feedback shift register](https://en.wikipedia.org/wiki/Linear-feedback_shift_register).
//! with a cycle of 2²⁴.
//!
//! Interestingly this means that with some clever math it's possible to generate the `n`th number
//! from any starting secret number with only 24 calculations. Unfortunately this doesn't help for
//! part two since we need to check every possible price change. However to speed things up we can
//! make several optimizations:
//!
//! * First the sequence of 4 prices is converted from -9..9 to a base 19 index of 0..19.
//! * Whether a monkey has seen a sequence before and the total bananas for each sequence are
//! stored in an array. This is much faster than a `HashMap`. Using base 19 gives much better
//! cache locality needing only 130321 elements, for example compared to shifting each new cost
//! by 5 bits and storing in an array of 2²⁰ = 1048675 elements. Multiplication on modern
//! processors is cheap (and several instructions can issue at once) but random memory access
//! is expensive.
//!
//! A SIMD variant processes 8 hashes at a time, taking about 60% of the time of the scalar version.
//! The bottleneck is that disjoint indices must be written in sequence reducing the amount of work
//! that can be parallelized.
use crate::util::parse::*;
use crate::util::thread::*;
use std::sync::Mutex;
type Input = (u64, u16);
struct Exclusive {
part_one: u64,
part_two: Vec<u16>,
}
pub fn parse(input: &str) -> Input {
let mutex = Mutex::new(Exclusive { part_one: 0, part_two: vec![0; 130321] });
#[cfg(not(feature = "simd"))]
scalar::parallel(input, &mutex);
#[cfg(feature = "simd")]
simd::parallel(input, &mutex);
let Exclusive { part_one, part_two } = mutex.into_inner().unwrap();
(part_one, *part_two.iter().max().unwrap())
}
pub fn part1(input: &Input) -> u64 {
input.0
}
pub fn part2(input: &Input) -> u16 {
input.1
}
#[cfg(not(feature = "simd"))]
mod scalar {
use super::*;
// Use as many cores as possible to parallelize the remaining search.
pub(super) fn parallel(input: &str, mutex: &Mutex<Exclusive>) {
let numbers: Vec<_> = input.iter_unsigned().collect();
spawn_parallel_iterator(&numbers, |iter| worker(mutex, iter));
}
fn worker(mutex: &Mutex<Exclusive>, iter: ParIter<'_, u32>) {
let mut part_one = 0;
let mut part_two = vec![0; 130321];
let mut seen = vec![u16::MAX; 130321];
for (id, number) in iter.enumerate() {
let id = id as u16;
let zeroth = *number;
let first = hash(zeroth);
let second = hash(first);
let third = hash(second);
let mut a;
let mut b = to_index(zeroth, first);
let mut c = to_index(first, second);
let mut d = to_index(second, third);
let mut number = third;
let mut previous = third % 10;
for _ in 3..2000 {
number = hash(number);
let price = number % 10;
// Compute index into the array.
(a, b, c, d) = (b, c, d, to_index(previous, price));
let index = (6859 * a + 361 * b + 19 * c + d) as usize;
previous = price;
// Only sell the first time we see a sequence.
// By storing the id in the array we don't need to zero every iteration which is faster.
if seen[index] != id {
part_two[index] += price as u16;
seen[index] = id;
}
}
part_one += number as u64;
}
// Merge into global results.
let mut exclusive = mutex.lock().unwrap();
exclusive.part_one += part_one;
exclusive.part_two.iter_mut().zip(part_two).for_each(|(a, b)| *a += b);
}
/// Compute next secret number using a
/// [Xorshift LFSR](https://en.wikipedia.org/wiki/Linear-feedback_shift_register#Xorshift_LFSRs).
fn hash(mut n: u32) -> u32 {
n = (n ^ (n << 6)) & 0xffffff;
n = (n ^ (n >> 5)) & 0xffffff;
(n ^ (n << 11)) & 0xffffff
}
/// Convert -9..9 to 0..18.
fn to_index(previous: u32, current: u32) -> u32 {
9 + current % 10 - previous % 10
}
}
#[cfg(feature = "simd")]
mod simd {
use super::*;
use std::simd::Simd;
use std::simd::num::SimdUint as _;
type Vector = Simd<u32, 8>;
pub(super) fn parallel(input: &str, mutex: &Mutex<Exclusive>) {
let mut numbers: Vec<_> = input.iter_unsigned().collect();
// Add zero elements so that size is a multiple of 8.
// Zero always hashes to zero and does not contribute to score.
numbers.resize(numbers.len().next_multiple_of(8), 0);
let chunks: Vec<_> = numbers.chunks_exact(8).collect();
spawn_parallel_iterator(&chunks, |iter| worker(mutex, iter));
}
/// Similar to scalar version but using SIMD vectors instead.
/// 8 lanes is the sweet spot for performance as the bottleneck is the scalar loop writing
/// to disjoint indices after each step.
fn worker(mutex: &Mutex<Exclusive>, iter: ParIter<'_, &[u32]>) {
let ten = Simd::splat(10);
let x = Simd::splat(6859);
let y = Simd::splat(361);
let z = Simd::splat(19);
let mut part_one = 0;
let mut part_two = vec![0; 130321];
for slice in iter {
// Each lane uses a different bit to track if a sequence has been seen before.
let mut seen = vec![u8::MAX; 130321];
let zeroth = Simd::from_slice(slice);
let first = hash(zeroth);
let second = hash(first);
let third = hash(second);
let mut a;
let mut b = to_index(zeroth, first);
let mut c = to_index(first, second);
let mut d = to_index(second, third);
let mut number = third;
let mut previous = third % ten;
for _ in 3..2000 {
number = hash(number);
let prices = number % ten;
// Compute index into the array.
(a, b, c, d) = (b, c, d, to_index(previous, prices));
let indices = x * a + y * b + z * c + d;
previous = prices;
// Only sell the first time we see a sequence.
let indices = indices.to_array();
let prices = prices.to_array();
for i in 0..8 {
let index = indices[i] as usize;
// Avoid branching to improve speed, instead multiply by either 0 or 1,
// depending if sequence has been seen before or not.
let bit = (seen[index] >> i) & 1;
seen[index] &= !(1 << i);
part_two[index] += prices[i] as u16 * bit as u16;
}
}
part_one += number.reduce_sum() as u64;
}
// Merge into global results.
let mut exclusive = mutex.lock().unwrap();
exclusive.part_one += part_one;
exclusive.part_two.iter_mut().zip(part_two).for_each(|(a, b)| *a += b);
}
/// SIMD vector arguments are passed in memory so inline functions to avoid slow transfers
/// to and from memory.
#[inline]
fn hash(mut n: Vector) -> Vector {
let mask = Simd::splat(0xffffff);
n = (n ^ (n << 6)) & mask;
n = (n ^ (n >> 5)) & mask;
(n ^ (n << 11)) & mask
}
#[inline]
fn to_index(previous: Vector, current: Vector) -> Vector {
let nine = Simd::splat(9);
let ten = Simd::splat(10);
nine + (current % ten) - (previous % ten)
}
}