-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathday15.rs
186 lines (156 loc) · 5.53 KB
/
day15.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
//! # Warehouse Woes
//!
//! Festive version of [Sokoban](https://en.wikipedia.org/wiki/Sokoban).
//!
//! Part one loops in a straight line looking for the next space `.` or wall `#`. No bounds checks
//! are needed as the maze is enclosed. If a space is found then all items are pushed one block
//! in that direction.
//!
//! Part two re-uses the part one logic for horizontal moves. Vertical moves use a
//! [breadth first search](https://en.wikipedia.org/wiki/Breadth-first_search) to identify the
//! cascading boxes that need to be moved. Boxes are added strictly left to right to make checking
//! for previously added boxes easier. To prevent adding a box twice we check that the
//! item at `index - 2` is different. For example:
//!
//! ```none
//! @ Indices:
//! [] 23
//! [][] 4567
//! [] 89
//! ```
//!
//! When processing 6 we try to add 8, however 8 and 9 have already been added when processing 4
//! so we skip.
//!
//! If any next space is a wall then we cancel the entire move and return right away. Otherwise
//! all boxes are moved in the *reverse* order that they were found by the search.
use crate::util::grid::*;
use crate::util::point::*;
use std::mem::swap;
type Input<'a> = (Grid<u8>, &'a str);
pub fn parse(input: &str) -> Input<'_> {
let (prefix, suffix) = input.split_once("\n\n").unwrap();
let grid = Grid::parse(prefix);
(grid, suffix)
}
pub fn part1(input: &Input<'_>) -> i32 {
let (grid, moves) = input;
// We don't need to move the robot symbol so mark as empty space once located.
let mut grid = grid.clone();
let mut position = grid.find(b'@').unwrap();
grid[position] = b'.';
// Treat moves as a single string ignoring any newline characters.
for b in moves.bytes() {
match b {
b'<' => narrow(&mut grid, &mut position, LEFT),
b'>' => narrow(&mut grid, &mut position, RIGHT),
b'^' => narrow(&mut grid, &mut position, UP),
b'v' => narrow(&mut grid, &mut position, DOWN),
_ => (),
}
}
gps(&grid, b'O')
}
pub fn part2(input: &Input<'_>) -> i32 {
let (grid, moves) = input;
let mut grid = stretch(grid);
let mut position = grid.find(b'@').unwrap();
grid[position] = b'.';
// Reuse to minimize allocations.
let mut todo = Vec::with_capacity(50);
for b in moves.bytes() {
match b {
b'<' => narrow(&mut grid, &mut position, LEFT),
b'>' => narrow(&mut grid, &mut position, RIGHT),
b'^' => wide(&mut grid, &mut position, UP, &mut todo),
b'v' => wide(&mut grid, &mut position, DOWN, &mut todo),
_ => (),
}
}
gps(&grid, b'[')
}
fn narrow(grid: &mut Grid<u8>, start: &mut Point, direction: Point) {
let mut position = *start + direction;
let mut size = 1;
// Search for the next wall or open space.
while grid[position] != b'.' && grid[position] != b'#' {
position += direction;
size += 1;
}
// Move items one space in direction.
if grid[position] == b'.' {
let mut previous = b'.';
let mut position = *start + direction;
for _ in 0..size {
swap(&mut previous, &mut grid[position]);
position += direction;
}
// Move robot
*start += direction;
}
}
fn wide(grid: &mut Grid<u8>, start: &mut Point, direction: Point, todo: &mut Vec<Point>) {
// Short circuit if path in front of robot is empty.
if grid[*start + direction] == b'.' {
*start += direction;
return;
}
// Clear any items from previous push.
todo.clear();
// Add dummy item to prevent index of out bounds when checking for previously added boxes.
todo.push(ORIGIN);
todo.push(*start);
let mut index = 1;
while index < todo.len() {
let next = todo[index] + direction;
index += 1;
// Add boxes strictly left to right.
let (first, second) = match grid[next] {
b'[' => (next, next + RIGHT),
b']' => (next + LEFT, next),
b'#' => return, // Return early if there's a wall in the way.
_ => continue, // Open space doesn't add any more items to move.
};
// Check if this box has already been added by the previous box in this row.
if first != todo[todo.len() - 2] {
todo.push(first);
todo.push(second);
}
}
// Move boxes in reverse order, skipping the dummy item and robot.
for &point in todo[2..].iter().rev() {
grid[point + direction] = grid[point];
grid[point] = b'.';
}
// Move robot
*start += direction;
}
fn stretch(grid: &Grid<u8>) -> Grid<u8> {
let mut next = Grid::new(grid.width * 2, grid.height, b'.');
for y in 0..grid.height {
for x in 0..grid.width {
// Grid is already filled with '.', so only need to handle other kinds.
let (left, right) = match grid[Point::new(x, y)] {
b'#' => (b'#', b'#'),
b'O' => (b'[', b']'),
b'@' => (b'@', b'.'),
_ => continue,
};
next[Point::new(2 * x, y)] = left;
next[Point::new(2 * x + 1, y)] = right;
}
}
next
}
fn gps(grid: &Grid<u8>, needle: u8) -> i32 {
let mut result = 0;
for y in 0..grid.height {
for x in 0..grid.width {
let point = Point::new(x, y);
if grid[point] == needle {
result += 100 * point.y + point.x;
}
}
}
result
}