-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathday22.rs
172 lines (163 loc) · 5.34 KB
/
day22.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
//! # Slam Shuffle
//!
//! This problem requires `i128` integers to prevent overflow!
//!
//! ## Modular Arithmetic
//!
//! To solve we'll need some knowledge of [modular arithemetic](https://en.wikipedia.org/wiki/Modular_arithmetic).
//!
//! Some basic modular identities:
//! * (a + b) mod m = (a mod m) + (b mod m)
//! * (a * b) mod m = (a mod m) * (b mod m)
//! * The [modular inverse](https://en.wikipedia.org/wiki/Modular_multiplicative_inverse)
//! is used instead of division.
//!
//! ## Linear Congruences
//!
//! The next required insight is that each of the shuffle operation is a *linear congruence*
//! of the form:
//!
//! `Xₙ₊₁ = (aXₙ + c) mod m`
//!
//! For example "deal into new stack" which reverses the deck can be represented as:
//!
//! `Xₙ₊₁ = ((m - 1) * Xₙ + (m - 1)) mod m`
//!
//! With a deck of 3 cards this is:
//! * 0 => (2 * 0 + 2) mod 3 = 2
//! * 1 => (2 * 1 + 2) mod 3 = 1
//! * 2 => (2 * 2 + 2) mod 3 = 0
//!
//! "cut N cards" is:
//!
//! `Xₙ₊₁ = 1 * Xₙ + (m - N)) mod m`
//!
//! For example "cut 3" with a deck of 5 cards is:
//! * 0 => (1 * 0 + (5 - 3)) mod 5 = 2
//! * 1 => (1 * 1 + (5 - 3)) mod 5 = 3
//! * 2 => (1 * 2 + (5 - 3)) mod 5 = 4
//! * 3 => (1 * 3 + (5 - 3)) mod 5 = 0
//! * 4 => (1 * 3 + (5 - 3)) mod 5 = 1
//!
//! If N is negative the cut works from the end. If N is greater than m then take N mod m.
//!
//! "deal with increment N" is:
//!
//! `Xₙ₊₁ = N * Xₙ + 0) mod m`
//!
//! For example "deal with increment 3" with a deck of 5 cards is:
//! * 0 => (3 * 0 + 0) mod 5 = 0
//! * 1 => (3 * 1 + 0) mod 5 = 3
//! * 2 => (3 * 2 + 0) mod 5 = 1
//! * 3 => (3 * 3 + 0) mod 5 = 4
//! * 4 => (3 * 4 + 0) mod 5 = 2
//!
//! ## Composition
//!
//! Congruences can be composed:
//!
//! `Xₙ₊₁ = a₂ * (a₁Xₙ + c₁) + c₂) mod m = (a₁a₂Xₙ + a₂c₁ + c₂) mod m`
//!
//! so we could combine the previous "cut 3" and deal with increment 3" as:
//!
//! `Xₙ₊₁ = 3 * (1Xₙ + 2) + 0) mod m = (3Xₙ + 6) mod m`.
//!
//! This allows us to take all the input techniques and then combine them into a *single*
//! technique with the same effect, providing an efficient solution for part one.
//!
//! ## Inverse
//!
//! Part two is trickier. To find the card that ends up at index 2020 we need to find an inverse
//! congruence such that when we apply a composition to the shuffle we get the identity congruence:
//!
//! `(a₁a₂Xₙ + a₂c₁ + c₂) mod m = (Xₙ + 0) mod m`
//!
//! This implies that `a₁a₂ mod m = 1` which is the definition of the modular inverse`a₂ = a₁⁻¹`.
//!
//! The constant term `(a₂c₁ + c₂) mod m = 0` implies `c₂ = m - a₂c₁`.
//!
//! ## Exponentiation
//!
//! To find of inverse of 101741582076661 shuffles we need to raise to our inverse to the same
//! power. Let's look at the first few powers
//! * ax + c
//! * a * (ax + c) + c = a²x + ac + c
//! * a * (a²x + ac + c) = a³x + a²c + ac + c
//! * a * (a³x + a²c + ac + c) = a⁴x + a³c + a²c + ac + c
//!
//! We notice that the constant terms are the sum of a [geometric series](https://en.wikipedia.org/wiki/Geometric_series)
//! which is given by the closed-form formula:
//!
//! `cₙ = c(1 - aⁿ)/(1 - a)`
//!
//! Multiplying both sides by -1 and remembering that modular division is the multiplicative
//! inverse yields:
//!
//! `cₙ = c(aⁿ - 1)((a - 1)⁻¹) mod m`
//!
//! We can then raise a congruence to any power, using only one modular exponentiation and
//! one modular inverse, allowing us to solve part two efficiently.
//!
//! `Xₙ₊₁ = (aⁿXₙ + c(aⁿ - 1)((a - 1)⁻¹)) mod m`
use crate::util::math::*;
use crate::util::parse::*;
struct Technique {
a: i128,
c: i128,
m: i128,
}
impl Technique {
fn compose(&self, other: &Technique) -> Technique {
let m = self.m;
let a = (self.a * other.a) % m;
let c = (self.c * other.a + other.c) % m;
Technique { a, c, m }
}
fn inverse(&self) -> Technique {
let m = self.m;
let a = self.a.mod_inv(m).unwrap();
let c = m - (a * self.c) % m;
Technique { a, c, m }
}
fn power(&self, e: i128) -> Technique {
let m = self.m;
let a = self.a.mod_pow(e, m);
let c = (((a - 1) * (self.a - 1).mod_inv(m).unwrap() % m) * self.c) % m;
Technique { a, c, m }
}
fn shuffle(&self, index: i128) -> i128 {
(self.a * index + self.c) % self.m
}
}
pub fn parse(input: &str) -> &str {
input
}
pub fn part1(input: &str) -> i128 {
deck(input, 10007).shuffle(2019)
}
pub fn part2(input: &str) -> i128 {
deck(input, 119315717514047).inverse().power(101741582076661).shuffle(2020)
}
fn deck(input: &str, m: i128) -> Technique {
input
.lines()
.map(|line| {
let tokens: Vec<_> = line.split_ascii_whitespace().collect();
match tokens[..] {
[_, "into", _, _] => Technique { a: m - 1, c: m - 1, m },
[_, "with", _, n] => {
let n: i128 = n.signed();
let a = (m + n % m) % m;
Technique { a, c: 0, m }
}
["cut", n] => {
let n: i128 = n.signed();
let c = (m - n % m) % m;
Technique { a: 1, c, m }
}
_ => unreachable!(),
}
})
.reduce(|a, b| a.compose(&b))
.unwrap()
}