-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathday14.rs
331 lines (281 loc) · 12.9 KB
/
day14.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
//! # Chocolate Charts
//!
//! This solution is heavily inspired by [Askalski's](https://www.reddit.com/user/askalski/)
//! excellent post [Breaking the 1 billion recipes per second barrier](https://www.reddit.com/r/adventofcode/comments/a6wpwa/2018_day_14_breaking_the_1_billion_recipes_per/)
//!
//! The key insight is that after 23 recipes the elves converge into using the *same subset* of
//! recipes. This subset can be stored compactly in about 20% of the space and read sequentially
//! to allow efficient vector processing.
//!
//! Tricks used to speed things up:
//! * Separate writer and reader threads to generate recipes and check them in parallel.
//! * Vector processing of recipes using techniques similar to SIMD.
use crate::util::parse::*;
use std::sync::atomic::{AtomicBool, Ordering};
use std::sync::mpsc::{Receiver, Sender, channel};
use std::thread;
type Input = (String, usize);
/// Pre-calculate the first 23 recipes.
const PREFIX: [u8; 23] = [3, 7, 1, 0, 1, 0, 1, 2, 4, 5, 1, 5, 8, 9, 1, 6, 7, 7, 9, 2, 5, 1, 0];
pub fn parse(input: &str) -> Input {
// Send batches of recipes from the writer to the reader for checking.
let (tx, rx) = channel();
// Thread safe flag to let writer know when to stop.
let done = AtomicBool::new(false);
// Store recipes in fixed size vec prefilled with ones. Part two result is around 20 million
// so size should be sufficient for most inputs.
let mut recipes = vec![1; 25_000_000];
thread::scope(|scope| {
// Start writer thread to produce new recipes.
scope.spawn(|| writer(tx, &done, recipes.as_mut_slice()));
// Reader thread checks recipes for the answers, returning when both parts are found.
scope.spawn(|| reader(rx, &done, input)).join().unwrap()
})
}
pub fn part1(input: &Input) -> &str {
&input.0
}
pub fn part2(input: &Input) -> usize {
input.1
}
/// Receives batches of recipes from the writer thread, then scans them byte by byte searching
/// for the part two pattern. For simplicity the pattern is always assumed to by six digits.
fn reader(rx: Receiver<&[u8]>, done: &AtomicBool, input: &str) -> (String, usize) {
let part_one_target = input.unsigned::<usize>() + 10;
let part_two_target = u32::from_str_radix(input.trim(), 16).unwrap();
let mut part_one_result = None;
let mut part_two_result = None;
let mut history = Vec::new();
let mut total = 0;
let mut pattern = 0;
for slice in rx {
history.push(slice);
total += slice.len();
// The recipes are broken up into batches. Even though these batches originally come
// from the same contiguous slice, this thread has no way to know that or reassemble
// the original. The result could potentially be split over two or more slices.
if part_one_result.is_none() && total >= part_one_target {
let mut index = 0;
let mut offset = part_one_target - 10;
let mut result = String::new();
for _ in 0..10 {
// If we go past the end of a slice then check the next one.
while offset >= history[index].len() {
offset -= history[index].len();
index += 1;
}
// Push each digit into a string as there could be leading zeroes.
let digit = history[index][offset];
result.push((digit + b'0') as char);
offset += 1;
}
part_one_result = Some(result);
}
// Simple brute force pattern matching. Slices are received in order so the pattern will
// handle cases when the target is split between two slices.
if part_two_result.is_none() {
for (i, n) in slice.iter().copied().enumerate() {
pattern = ((pattern << 4) | (n as u32)) & 0xffffff;
if pattern == part_two_target {
part_two_result = Some(total - slice.len() + i - 5);
break;
}
}
}
// Signal the writer thread to finish once both results are found.
if part_one_result.is_some() && part_two_result.is_some() {
done.store(true, Ordering::Relaxed);
break;
}
}
(part_one_result.unwrap(), part_two_result.unwrap())
}
/// Generates recipes then sends them to the reader thread for checking in batches.
/// Processing is broken into alternating "cold" and "hot" loops. An outer enclosing loop checks
/// periodically for the done signal from the reader thread.
///
/// The "cold" loop processes recipes serially one by one but can handle input corner cases.
/// It's used when either:
/// * One or both elves are within the first 23 recipes.
/// * One or both elves are within the last 16 recipes.
///
/// The "hot" loop processes recipes efficiently in chunks of 16. The vast majority of recipes
/// are calculated in this loop. As much as possible is parallelized using techniques similar to
/// SIMD but using regular instructions instead of SIMD instrinsics or Rust's portable SIMD API.
///
/// Interestingly on an Apple M2 Max this "poor man's SIMD" has the same performance as using
/// the portable SIMD API. This is probably due to the fact that the serial loops that write new
/// recipes take the majority of the time.
fn writer<'a>(tx: Sender<&'a [u8]>, done: &AtomicBool, mut recipes: &'a mut [u8]) {
// The first 23 recipes have already been generated
// so the elves start at position 0 and 8 respectively.
let mut elf1 = 0;
let mut index1 = 0;
let mut elf2 = 8;
let mut index2 = 0;
let mut base = 0;
let mut size = 23;
let mut needed = 23;
// Store the smaller subset of recipes used by the elves.
let mut write = 0;
let mut snack: Vec<u8> = vec![0; 5_000_000];
while !done.load(Ordering::Relaxed) {
// Cold loop to handle start and end transitions.
while elf1 < 23 || elf2 < 23 || write - index1.max(index2) <= 16 {
// After the first 23 recipes both elves converge on the same set of ingredients.
let recipe1 = if elf1 < 23 {
PREFIX[elf1]
} else {
index1 += 1;
snack[index1 - 1]
};
let recipe2 = if elf2 < 23 {
PREFIX[elf2]
} else {
index2 += 1;
snack[index2 - 1]
};
// Add next recipe.
let next = recipe1 + recipe2;
if next < 10 {
recipes[size - base] = next;
size += 1;
} else {
recipes[size - base + 1] = next - 10;
size += 2;
}
if needed < size {
let digit = recipes[needed - base];
needed += 1 + digit as usize;
snack[write] = digit;
write += 1;
}
// Wrap around to start if necessary.
elf1 += 1 + recipe1 as usize;
if elf1 >= size {
elf1 -= size;
index1 = 0;
}
elf2 += 1 + recipe2 as usize;
if elf2 >= size {
elf2 -= size;
index2 = 0;
}
}
// Hot loop to handle the majority of recipes in the middle. Process at most 10,000 recipes
// at a time in order to produce batches between 160,000 and 320,000 bytes in size.
// This size is roughly tuned in order to maximize reader thread throughput.
let batch_size = 10_000.min((write - index1.max(index2) - 1) / 16);
for _ in 0..batch_size {
// Snacks can be processed sequentially.
let first = from_be_bytes(&snack, index1);
let second = from_be_bytes(&snack, index2);
let third = from_be_bytes(&snack, index1 + 8);
let fourth = from_be_bytes(&snack, index2 + 8);
// Each elf will skip forward between 16 and 32 snacks.
elf1 += 16 + lsb(prefix_sum(first)) + lsb(prefix_sum(third));
elf2 += 16 + lsb(prefix_sum(second)) + lsb(prefix_sum(fourth));
index1 += 16;
index2 += 16;
// Process the digits in parallel using techniques similar to SIMD.
let (digits1, indices1, extra1) = unpack(first, second);
let (digits2, indices2, extra2) = unpack(third, fourth);
// Scatter each digit into the correct location, leaving "holes" where ones should go.
// This is handled correctly by prefilling `recipes`` with ones when initializing.
for shift in (0..64).step_by(8) {
let digit = lsb(digits1 >> shift);
let index = lsb(indices1 >> shift);
recipes[size - base + index] = digit as u8;
let digit = lsb(digits2 >> shift);
let index = lsb(indices2 >> shift);
recipes[size - base + index + extra1] = digit as u8;
}
size += extra1 + extra2;
// Write the recipes that will actually be used in subsequent loops to a smaller
// contiguous vec.
while needed < size {
let digit = recipes[needed - base];
needed += 1 + digit as usize;
snack[write] = digit;
write += 1;
}
}
// Split the mutable `recipes` slice into two parts. This allows the reader thread to
// access the head in parallel while the reader thread continues to write to the tail,
// ensuring unique ownership of each part of memory to prevent any concurrency issues.
let (head, tail) = recipes.split_at_mut(size - base);
let _unused = tx.send(head);
recipes = tail;
base = size;
}
// Drop the sender to make the receiver hang up.
drop(tx);
}
/// Convert 8 bytes in [big endian order](https://en.wikipedia.org/wiki/Endianness) into a `usize`.
#[inline]
fn from_be_bytes(slice: &[u8], index: usize) -> usize {
usize::from_be_bytes(slice[index..index + 8].try_into().unwrap())
}
/// Convenience function that returns least significant byte.
#[inline]
fn lsb(u: usize) -> usize {
u & 0xff
}
/// Compute the prefix sum of each byte within a `usize`. Let `a..h` denote the bytes from most
/// significant to least significant and `Σx..y` denote the sum from `x` to `y` inclusive.
///
/// ```none
/// s | a | b | c | d | e | f | g | h |
/// s += (s >> 8) | a | Σa..b | Σb..c | Σc..d | Σd..e | Σe..f | Σf..g | Σg..h |
/// s += (s >> 16) | a | Σa..b | Σa..c | Σa..d | Σb..e | Σc..f | Σd..g | Σe..h |
/// s += (s >> 32) | a | Σa..b | Σa..c | Σa..d | Σa..e | Σa..f | Σa..g | Σa..h |
/// ```
#[inline]
fn prefix_sum(u: usize) -> usize {
let mut s = u;
s += s >> 8;
s += s >> 16;
s += s >> 32;
s
}
/// Takes two groups of 8 digits each packed into a `usize` as input, then returns the output
/// digits and their respective locations. Ones from sums greater than ten are implicit and not
/// included since recipes has already been pre-filled with ones.
#[inline]
fn unpack(first: usize, second: usize) -> (usize, usize, usize) {
const ONES: usize = 0x0101010101010101;
const SIXES: usize = 0x0606060606060606;
const INDICES: usize = 0x0001020304050607;
// Example values, showing each byte in a columm:
//
// first | 04 | 01 | 09 | 08 | 00 | 03 | 05 | 07 |
// second | 03 | 00 | 02 | 04 | 09 | 06 | 05 | 01 |
// sum | 07 | 01 | 0b | 0c | 09 | 09 | 0a | 08 |
let sum = first + second;
// Add 6 to each byte so that sums greater than or equal to ten become greater than or equal
// to 16, setting the first bit in the high nibble of each byte.
//
// sum | 07 | 01 | 0b | 0c | 09 | 09 | 0a | 08 |
// SIXES | 06 | 06 | 06 | 06 | 06 | 06 | 06 | 06 |
// total | 0d | 07 | 11 | 12 | 0f | 0f | 10 | 0e |
// tens | 00 | 00 | 01 | 01 | 00 | 00 | 01 | 00 |
let tens = ((sum + SIXES) >> 4) & ONES;
// Multiply by 10 to "spread" a 10 into each byte that has a total greater than 10.
//
// tens | 00 | 00 | 01 | 01 | 00 | 00 | 01 | 00 |
// tens * 10 | 00 | 00 | 0a | 0a | 00 | 00 | 0a | 00 |
// digits | 07 | 01 | 01 | 02 | 09 | 09 | 00 | 08 |
let digits = sum - 10 * tens;
// Columns greater than 10 will takes 2 bytes when written to recipes. Each index is
// offset by the number of 10s before it. Adding the normal increase indices gives the
// final location of each byte.
//
// tens | 00 | 00 | 01 | 01 | 00 | 00 | 01 | 00 |
// prefix sum | 00 | 00 | 01 | 02 | 02 | 02 | 03 | 03 |
// INDICES | 00 | 01 | 02 | 03 | 04 | 05 | 06 | 07 |
// indices | 00 | 02 | 03 | 05 | 06 | 07 | 09 | 0a |
let indices = prefix_sum(tens) + INDICES;
// The total number of bytes that need to be written is one plus the last index.
let extra = 1 + lsb(indices);
(digits, indices, extra)
}