-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathday06.rs
290 lines (257 loc) · 10.5 KB
/
day06.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
//! # Chronal Coordinates
//!
//! Both parts can be solved with a [BFS](https://en.wikipedia.org/wiki/Breadth-first_search)
//! approach. The bounding box of the coordinates is roughly 300 wide by 300 high so the total
//! complexity would be approximately `O(90,000)`.
//!
//! A much faster approach for both parts is a
//! [sweep line algorithm](https://en.wikipedia.org/wiki/Sweep_line_algorithm). We sweep from
//! top to bottom (minimum y coordinate to maximum y coordinate) computing the area a slice at a
//! time. There are 50 coordinates so the complexity of this approach is much lower at
//! approximately `O(300 * 50) = O(15000)`.
use crate::util::iter::*;
use crate::util::parse::*;
use crate::util::point::*;
pub struct Input {
min_y: i32,
max_y: i32,
points: Vec<Point>,
}
/// Parse points while keeping track of the min and max y coordinates.
pub fn parse(input: &str) -> Input {
let mut min_y = i32::MAX;
let mut max_y = i32::MIN;
let points: Vec<_> = input
.iter_signed()
.chunk::<2>()
.map(|[x, y]| {
min_y = min_y.min(y);
max_y = max_y.max(y);
Point::new(x, y)
})
.collect();
Input { min_y, max_y, points }
}
/// Sweep line approach computing the area of each *finite* coordinate. A coordinate has infinite
/// area if any point on the edge of the bounding box formed by the minimum and maximum x and y
/// coordinates is closest to that coordinate.
///
/// We sort the coordinates in ascending x value then for each row, compare the next coordinate
/// against the head of a stack. This quickly eliminates coordinates that are further away at all
/// points. Interestingly this approach is very similar to the previous [`Day 5`].
///
/// [`Day 5`]: crate::year2018::day05
pub fn part1(input: &Input) -> i32 {
let mut points = input.points.clone();
let mut area = vec![0; points.len()];
let mut finite = vec![true; points.len()];
let mut candidates: Vec<(usize, i32, i32)> = Vec::new();
// Special value for coordinates that are equidistant from nearest neighbour.
let marker = usize::MAX;
// Sorts points left to right so that ranges can be merged.
points.sort_unstable_by_key(|p| p.x);
// Sweep top to bottom.
for row in input.min_y..=input.max_y {
// Left to right.
for (j, &p) in points.iter().enumerate() {
// Manhattan distance is the absolute difference in y coordinates since the x
// coordinate is already identical.
let m1 = (p.y - row).abs();
let x1 = p.x;
loop {
if let Some((i, m0, x0)) = candidates.pop() {
// Compare against the head of the stack.
let delta = m1 - m0;
let width = x1 - x0;
if delta < -width {
// Left coordinate is further away at every points.
// Discard and pop next left coordinate from the stack.
//
// rrrrrrrrrrrrrrrr <-- Considering only this row
// ....R...........
// ................
// ................
// ..L.............
continue;
} else if delta == -width {
// Left coordinate is equal from its center leftwards
// Replace with special marker value.
//
// ...rrrrrrrrrrrrr
// ....R...........
// ................
// ..L.............
candidates.push((marker, m0, x0));
candidates.push((j, m1, x1));
} else if delta == width {
// Right coordinate is equal from its center rightwards.
// Replace with special marker value.
//
// llll............
// ..L.............
// ................
// ....R...........
candidates.push((i, m0, x0));
candidates.push((marker, m1, x1));
} else if delta > width {
// Right coordinate is further away at every point.
// Discard then check next right coordinate from points.
//
// llllllllllllllll
// ..L.............
// ................
// ................
// ....R...........
candidates.push((i, m0, x0));
} else {
// Coordinates split the distance, some points closer to left and others
// closer to right. Add both to candidates.
//
// lllll.rrrrrrrrrr
// .........R......
// ..L.............
// ................
// ................
candidates.push((i, m0, x0));
candidates.push((j, m1, x1));
}
} else {
// Nothing on stack to compare with, push coordinate.
candidates.push((j, m1, x1));
}
break;
}
}
// Any coordinates that are closest to the bounding box edges are infinite.
let left = candidates[0].0;
if left != marker {
finite[left] = false;
}
let right = candidates[candidates.len() - 1].0;
if right != marker {
finite[right] = false;
}
// Only consider finite coordinates.
for window in candidates.windows(3) {
let (_, m0, x0) = window[0];
let (i, m1, x1) = window[1];
let (_, m2, x2) = window[2];
// Skip coordinates where all points are equally distant from their neighbor.
if i != marker {
if row == input.min_y || row == input.max_y {
// All coordinates the are closest to the top or bottom row are infinite.
finite[i] = false;
} else {
// Count points closest to the left, to the right and the coordinate itself.
let left = (x1 - x0 + m0 - m1 - 1) / 2;
let right = (x2 - x1 + m2 - m1 - 1) / 2;
area[i] += left + 1 + right;
}
}
}
candidates.clear();
}
// Find largest area closest to finite coordinate.
(0..points.len()).filter_map(|i| finite[i].then_some(area[i])).max().unwrap()
}
pub fn part2(input: &Input) -> i32 {
part2_testable(input, 10_000)
}
/// Sweep from top to bottom to find the size of the roughly circular area that is less than
/// a specified maximum distance from all other points.
///
/// Finding the center of this circle to act as a starting point is an interesting sub-problem.
/// The two dimensional [geometric median](https://en.wikipedia.org/wiki/Geometric_median) that
/// minimizes the Euclidean distance to all other points has no general closed form formula.
/// The [centroid](https://en.wikipedia.org/wiki/Centroid) is close but not exact as it minimizes
/// the distance *squared*.
///
/// However the Manhattan distance is independent for each axis, so we can instead solve for the
/// one dimensional case. This is the [median](https://en.wikipedia.org/wiki/Median) of each axis.
/// Intuitively this makes sense, as the median has the same number of points on either side,
/// so moving either direction, the increase from half the points is cancelled out by the decrease
/// of the other half of the points.
///
/// The algorithm is:
/// * Find center
/// * Go upwards from center until top edge of circle reached.
/// * For each row of circle, find left and right extents
/// * Add area of row to total, then advance to row below.
pub fn part2_testable(input: &Input, max_distance: i32) -> i32 {
// Sort points in ascending order in order to find median.
let mut xs: Vec<_> = input.points.iter().map(|p| p.x).collect();
xs.sort_unstable();
let mut ys: Vec<_> = input.points.iter().map(|p| p.y).collect();
ys.sort_unstable();
// Find coordinate closest to median point.
let x = xs[xs.len() / 2];
let mut y = ys[ys.len() / 2];
// Calculate minimum distance.
let median = Point::new(x, y);
let mut y_distance: i32 = input.points.iter().map(|o| o.manhattan(median)).sum();
// Find top of region
while y_distance + prev(&ys, y) < max_distance {
y_distance += prev(&ys, y);
y -= 1;
}
let mut left = x;
let mut left_dist = y_distance;
let mut right = x;
let mut right_dist = y_distance;
let mut area = 0;
// Sweep top to bottom.
while y_distance < max_distance {
// Expand moving left edge to the left
while left_dist < max_distance {
left_dist += prev(&xs, left);
left -= 1;
}
// Contract moving left edge to the right
while left_dist >= max_distance {
left_dist += next(&xs, left);
left += 1;
}
// Expand moving right edge to the right
while right_dist < max_distance {
right_dist += next(&xs, right);
right += 1;
}
// Contract moving right edge to the left
while right_dist >= max_distance {
right_dist += prev(&xs, right);
right -= 1;
}
// Move downwards one row.
let next = next(&ys, y);
y_distance += next;
left_dist += next;
right_dist += next;
y += 1;
area += right - left + 1;
}
area
}
/// Calculate the change in distance moving left or up.
fn prev(slice: &[i32], n: i32) -> i32 {
let mut total = 0;
for &s in slice {
if s >= n {
total += 1;
} else {
total -= 1;
}
}
total
}
/// Calculate the change in distance moving down or right.
fn next(slice: &[i32], n: i32) -> i32 {
let mut total = 0;
for &s in slice {
if s <= n {
total += 1;
} else {
total -= 1;
}
}
total
}