-
-
Notifications
You must be signed in to change notification settings - Fork 28
/
Copy pathcreate_hist_data.py
56 lines (46 loc) · 1.63 KB
/
create_hist_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
"""
If you find this code useful, please cite our paper:
Mahmoud Afifi, Marcus A. Brubaker, and Michael S. Brown. "HistoGAN:
Controlling Colors of GAN-Generated and Real Images via Color Histograms."
In CVPR, 2021.
@inproceedings{afifi2021histogan,
title={Histo{GAN}: Controlling Colors of {GAN}-Generated and Real Images via
Color Histograms},
author={Afifi, Mahmoud and Brubaker, Marcus A. and Brown, Michael S.},
booktitle={CVPR},
year={2021}
}
"""
from histogram_classes.RGBuvHistBlock import RGBuvHistBlock
import torch
from PIL import Image
from torchvision import transforms
import numpy as np
from os import listdir
from os.path import isfile, join
def hist_interpolation(hist1, hist2):
ratio = torch.rand(1)
return hist1 * ratio + hist2 * (1 - ratio)
torch.cuda.set_device(0)
histblock = RGBuvHistBlock(insz=250, h=64,
resizing='sampling',
method='inverse-quadratic',
sigma=0.02,
device=torch.cuda.current_device())
transform = transforms.Compose([transforms.ToTensor()])
files = [join('histogram_data', f) for f in listdir('histogram_data') if
isfile(join('histogram_data', f))]
first = True
for f in files:
img_hist = Image.open(f)
img_hist = torch.unsqueeze(transform(img_hist), dim=0).to(
device=torch.cuda.current_device())
h = histblock(img_hist)
if first:
histograms = h
first = False
else:
histograms = torch.cat((histograms, h), dim=0)
histograms = torch.unsqueeze(histograms, dim=1)
histograms = histograms.cpu().numpy()
np.save('histogram_data/histograms.npy', histograms)