-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathclasses.py
389 lines (281 loc) · 12.4 KB
/
classes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
import numpy as np
import copy
import matplotlib.pyplot as plt
class LinearLayer():
def __init__(self, input_size, nodes, activation=None, layerid=0, addBias=True):
self.addBias = addBias
if self.addBias:
self.inputs = input_size + 1
else:
self.inputs = input_size
self.nodes = nodes
self.weights = self._xavier_init(self.inputs, nodes)
self.activationFunction = activation
self.layerid = layerid
def _xavier_init(self, input_size, output_size):
return np.random.randn(input_size, output_size) * np.sqrt(2.0 / (input_size + output_size))
def forwards(self, inputs):
if self.addBias:
if len(inputs.shape) == 1:
inputs_wbias = np.insert(inputs, 0, 1, axis=0)
elif len(inputs.shape) == 2:
inputs_wbias = np.insert(inputs, 0, 1, axis=1)
else:
#only 1d or 2d
raise(ValueError(f'{inputs.shape} can only 1d or 2d'))
else:
inputs_wbias = inputs
if not self._canMultiply(inputs_wbias, self.weights):
raise(ValueError(f'{inputs_wbias.shape} can not be broadcast with {self.weights.shape}'))
return np.matmul(inputs_wbias, self.weights)
def backwards(self, backprop_errors):
if not self._canMultiply(backprop_errors, self.weights[1:].T):
raise(ValueError(f'{backprop_errors.shape} can not be broadcast with {self.weights[1:].T.shape}'))
#calculate backwards without bias weights
return np.matmul(backprop_errors, self.weights[1:].T)
def activation(self, activations):
if self.activationFunction:
return self.activationFunction.calc(activations)
def _canMultiply(self, m1, m2):
sh1 = np.shape(m1)
sh2 = np.shape(m2)
if len(sh1) == 1 and sh1[0] != sh2[0]:
return False
elif len(sh1) == 2 and sh1[1] != sh2[0]:
return False
else:
return True
class BackpropStructure():
def __init__(self):
self.preActivations = []
self.postActivations = []
self.delta = []
self.loss = []
self.wGradient = []
def clear(self):
self.preActivations = []
self.postActivations = []
self.delta = []
self.loss = []
self.wGradient = []
class Network():
def __init__(self, structure, loss):
self.llayers = len(structure)
self.layers = []
self.batchSize = 0
self.inputSize = 0
self.targetSize = 0
self.training = False
self.lf = loss
self.backprop = BackpropStructure()
#init layers
for layer in range(self.llayers):
self.layers.append(LinearLayer(input_size=structure[layer]['inputs'],
nodes=structure[layer]['nodes'],
activation=structure[layer]['activation'],
layerid=layer,
addBias=True))
def forward(self, inputs, targets=None):
if not isinstance(inputs, np.ndarray):
raise(TypeError, f'{type(inputs)} not type ndarray')
if not isinstance(targets, np.ndarray) and self.training:
raise(TypeError, f'{type(targets)} not type ndarray')
self.batchSize = inputs.shape[0]
try:
self.inputSize = inputs.shape[1]
except IndexError:
self.inputSize = 1
x = inputs
if self.training:
self.backprop.clear()
self.backprop.postActivations.append(x)
try:
self.targetSize = targets.shape[1]
except IndexError:
self.targetSize = 1
if targets.shape[0] != self.batchSize:
raise(TypeError, f'number of input batches: {self.batchSize} does not match number of output batches: {targets.shape[0]}')
for layer in self.layers:
x = layer.forwards(x)
x_act = layer.activation(x)
if self.training:
self.backprop.preActivations.append(x)
self.backprop.postActivations.append(x_act)
#set input for next layer to post activations
x = x_act
outputs = x_act
if self.training:
outputs = outputs.reshape(self.batchSize, self.targetSize)
targets = targets.reshape(self.batchSize, self.targetSize)
self.backprop.loss = self.calcLoss(outputs, targets)
if isinstance(layer.activationFunction, Softmax):
#softmax requires preactivations for inversions
self.backprop.delta.append(layer.activationFunction.outputLayerDelta(outputs, targets, self.backprop.preActivations[-1]))
else:
self.backprop.delta.append(layer.activationFunction.outputLayerDelta(outputs, targets))
return outputs
def backward(self):
#backpropogate deltas
for layer in range(self.llayers-1,0,-1):
thisLayer = layer
previousLayer= layer - 1
#calculate forward prop activations through the derivative of the layers activation function
activations = self.layers[previousLayer].activationFunction.derivative(self.backprop.preActivations[previousLayer])
#backprop deltas to previous layer
deltaNextLayer = self.backprop.delta[0]
deltaThisLayer = self.layers[thisLayer].backwards(deltaNextLayer) * activations
self.backprop.delta.insert(0, deltaThisLayer)
#calculate gradient for each weight
for layer in range(self.llayers):
gradient = []
activations = self.backprop.postActivations[layer]
#add bias activations back for gradient calculation
activations_wbias = np.insert(activations, 0, 1, axis=1)
for batch_sample in range(self.batchSize):
#Calculate gradient for every weight in this layer with every data sample
activations_reshaped = activations_wbias[batch_sample].reshape((len(activations_wbias[batch_sample]),1))
delta_reshaped = self.backprop.delta[layer][batch_sample].reshape((1,len(self.backprop.delta[layer][batch_sample])))
gradient.append(np.matmul(activations_reshaped, delta_reshaped))
self.backprop.wGradient.insert(layer, sum(gradient))
return self.backprop.wGradient
def sgd(self, gradient, lr=0.0001, lb=0):
for i, layer in enumerate(self.layers):
if layer.weights.shape != gradient[i].shape:
raise(ValueError(f'{layer.weights.shape} not the same size as {gradient[i].shape}'))
#calculate weight decay term
weights_wo_bias = copy.deepcopy(layer.weights)
weights_wo_bias[0,:] = 0
weightDecay = lb*weights_wo_bias
#gradient descent
layer.weights = layer.weights - (lr*gradient[i] + lr*weightDecay)
def calcLoss(self, y, t):
# weight decay needs to be reshaped to fit loss matrix shape
return self.lf.loss(y, t) #+ self.weightDecayLoss()
def train(self):
self.training = True
self.backprop.clear()
return 1
def evaluate(self):
self.training = False
self.backprop.clear()
return 1
class RegressionLoss():
def __init__(self):
pass
def loss(self, y, t):
if y.shape == t.shape:
#mean squared loss
return 1/2 * pow(y-t,2)
else:
raise(f'loss cannot be calculated across {y.shape} and {t.shape}')
class ClassificationLoss():
def __init__(self):
pass
def loss(self, y, t):
if y.shape == t.shape:
#cross entropy loss
return -(t*np.log(y) + (1-t)*np.log(1-y))
else:
raise(f'loss cannot be calculated across {y.shape} and {t.shape}')
class ActivationFunction():
# Container class for activation functions
def __init__(self):
pass
def calc(self, x):
xt = self.form(x)
return self._calc(xt)
def derivative(self, x):
xt = self.form(x)
return self._derivative(xt)
def reverse(self, x, a=None):
xt = self.form(x)
if a is not None: at = self.form(a)
return self._reverse(xt, at)
def outputLayerDelta(self, y, t, a=None):
yt = self.form(y)
tt = self.form(t)
if a is not None: a = self.form(a)
return self._outputLayerDelta(yt, tt, a)
def form(self, x):
if not isinstance(x, (list, np.ndarray)):
raise(TypeError(f'{type(x)} not data type list or ndarray'))
if isinstance(x, list):
x = np.array(x)
return x
class ReLU(ActivationFunction):
def __init(self):
super().__init__()
def _calc(self, x):
return np.maximum(0, x)
def _derivative(self, x):
return np.where(x > 0, 1, 0)
def _reverse(self, x, a=None):
return x
def _outputLayerDelta(self, outputs, targets, activations):
return self._reverse(outputs) - self._reverse(targets)
class LeakyReLU(ActivationFunction):
def __init(self):
super().__init__()
def _calc(self, x):
return np.maximum(0.1*x, x)
def _derivative(self, x):
return np.where(x > 0, 1, 0.1)
def _reverse(self, x, a=None):
raise(ValueError, "NOT IMPLIMENTED YET")
return 0
def _outputLayerDelta(self, outputs, targets, activations):
return self._reverse(outputs) - self._reverse(targets)
class Linear(ActivationFunction):
def __init(self):
super().__init__()
def _calc(self, x):
return x
def _derivative(self, x):
return np.ones(x.shape)
def _reverse(self, x, a=None):
return x
def _outputLayerDelta(self, outputs, targets, activations):
return self._reverse(outputs) - self._reverse(targets)
class Sigmoid(ActivationFunction):
def __init__(self):
super().__init__()
def _calc(self, x):
return 1 / (1 + np.exp(-x))
def _derivative(self, x):
sigmoid_x = self.calc(x)
return sigmoid_x * (1 - sigmoid_x)
def _reverse(self, x, a=None):
# Avoid issues with log and division by zero
x = np.clip(x, 1e-2, 1 - 1e-2)
return np.log(x / (1 - x))
def _outputLayerDelta(self, outputs, targets, activations):
return self._reverse(outputs) - self._reverse(targets)
class TanH(ActivationFunction):
def __init(self):
super().__init__()
def _calc(self, x):
return (np.exp(x) - np.exp(-x)) / (np.exp(x) + np.exp(-x))
def _derivative(self, x):
return 1 - pow((np.exp(x) - np.exp(-x)) / (np.exp(x) + np.exp(-x)),2)
def _reverse(self, x, a=None):
raise(TypeError, 'Not completed')
def _outputLayerDelta(self, outputs, targets, activations):
return self._reverse(outputs) - self._reverse(targets)
class Softmax(ActivationFunction):
def __init__(self):
super().__init__()
def _calc(self, x):
return np.transpose(np.exp(x).T / np.sum(np.exp(x), axis=len(x.shape)-1))
def _derivative(self, x):
# dont need derivative unless softmax is in a hidden layer
raise(TypeError, 'Not completed')
def _reverse(self, x, a):
x = np.clip(x, 1e-2, 1 - 1e-2)
if len(a.shape) == 1:
samples = 1
else:
samples = len(a)
return np.log(np.sum(np.exp(a), axis=len(a.shape)-1)).reshape(samples, 1) + np.log(x)
def _outputLayerDelta(self, outputs, targets, activations):
# training softmax on direct output delta is much more stable than putting through reverse function
return outputs - targets