diff --git a/docs/src/chebyshev.md b/docs/src/chebyshev.md new file mode 100644 index 000000000..c4d38f8ae --- /dev/null +++ b/docs/src/chebyshev.md @@ -0,0 +1,336 @@ +Chebyshev tranform via Fourier transform +=============================================== + +We express a function $f$ as a sum of Chebyshev polynomials +```math +\begin{equation} +f(x) = \sum^N_{n=0} a_{n}T_n(x) \tag{1} +\end{equation} +``` +The Chebyshev polynomials are defined by +```math +\begin{equation} +T_n(\cos \theta) = \cos n \theta, {\rm~with~}x = \cos \theta. +\end{equation} +``` +We can see how to find $\{a_{n}\}$ given $\{f(x_j)\}$ via Fourier transform. +The Fourier series representation of $f$ on a uniform grid indexed by $j$ is defined by +```math +\begin{equation} +f_j = \sum_{k=0}^{M-1} b_{k}\exp\left[i \frac{2\pi k j}{M}\right].\tag{2} +\end{equation} +``` + +Gauss-Chebyshev-Lobotto points +=============================================== + +We pick points +```math +\begin{equation} +x_j = \cos \theta_j, \quad \theta_j = \frac{j \pi}{N} \quad 0 \leq j \leq N. +\end{equation} +``` +Then +```math +\begin{equation} +T_n(x_j) = \cos \frac{n j \pi}{N}. +\end{equation} +``` +Assuming that $M = 2N$, with $N$ an integer, and $b_{k} = b_{M-k}$ for $k>0$, we have that +```math +\begin{equation} +f_j = b_{0} + b_{N}(-1)^j + \sum_{n=1}^{N-1} +b_{n}\left(\exp\left[i \frac{\pi n j}{N}\right]+\exp\left[-i \frac{\pi n j}{N}\right]\right). +\end{equation} +``` +Comparing this to the expression for $f(x_j)$ in the Chebyshev representation, +```math +\begin{equation} +f_j = a_{0} + a_{N}(-1)^j + \frac{1}{2}\sum_{n=1}^{N-1} +a_{n}\left(\exp\left[i \frac{\pi n j}{N}\right]+\exp\left[-i \frac{\pi n j}{N}\right]\right), +\end{equation} +``` +we find that the Chebyshev representation on the Chebyshev points is equivalent +to the Fourier representation on the uniform grid points, if we identify +```math +\begin{equation} +b_{0} = a_{0}, \quad b_{N} = a_{N}, \quad b_{j} = \frac{a_{j}}{2} {\rm~for~} 1 \leq j \leq N-1. +\end{equation} +``` +This fact allows us to carry out the Chebyshev tranform by Fourier transforming the $\{f_j\}$ data +and carrying out the correct normalisation of the resulting coefficients. + +Gauss-Chebyshev-Radau points +=============================================== + +The last subsection dealt with grids which contain both endpoints on the $[-1,1]$ domain. +Certain problems require domains which contain a single endpoint, i.e., $x \in (-1,1]$. For +these cases we choose the points +```math +\begin{equation} +x_j = \cos \theta_j, \quad \theta_j = \frac{2 j \pi}{2 N + 1} \quad 0 \leq j \leq N. +\end{equation} +``` +Writing out the Chebyshev series (1), +we have that +```math +\begin{equation} +\begin{split}f(x_j) = & \sum^N_{n=0} a_{n} \cos \frac{2 n j \pi}{2 N + 1} \\ & += a_{0} + \sum^N_{n=1} \frac{a_{n}}{2}\left(\exp\left[i \frac{2\pi n j}{2N +1}\right] + \exp\left[-i \frac{2\pi n j}{2N +1}\right]\right).\end{split} +\tag{3} +\end{equation} +``` +The form of the series (3) is identical to the form of +a Fourier series on an odd number of points, i.e., taking $M = 2 N + 1$ in equation (2), +and assuming $b_{k} = b_{M -k}$ for $k>1$, +we have that +```math +\begin{equation} +f_j = b_{0} + \sum_{k=1}^{N} b_{k}\left(\exp\left[i \frac{2\pi k j}{2N+1}\right] + \exp\left[-i \frac{2\pi k j}{2N+1} \right]\right). +\end{equation} +``` +We can thus take a Chebyshev transform using a Fourier transform on Gauss-Chebyshev-Radau points if we identify +```math +\begin{equation} +b_{0} = a_{0}, \quad b_{j} = \frac{a_{j}}{2} {\rm~for~} 1 \leq j \leq N. +\end{equation} +``` + +Chebyshev coefficients of derivatives of a function +=============================================== + +Starting from the expression of $f$ as a sum Chebyshev polynomials, equation (1), +we can obtain an expression for the derivative +```math +\begin{equation} +\frac{d f}{d x} = \sum^N_{n=0} a_{n}\frac{d T_{n}}{d x}.\tag{4} +\end{equation} +``` +We note that we must be able to express ${d f}/{d x}$ as a sum +of Chebyshev polynomials of up to order $N-1$, i.e., +```math +\begin{equation} +\frac{d f}{d x} = \sum^{N-1}_{n=0} d_{n}T_{n}. +\end{equation} +``` +We must determine the set $\{d_{n}\}$ in terms of the set $\{a_{n}\}$. +First, we equate the two expressions to find that +```math +\begin{equation} +\sum^N_{k=0} a_{k}\frac{d T_{k}}{d x} = \sum^{N-1}_{n=0} d_{n}T_{n}.\tag{5} +\end{equation} +``` +We use the Chebyshev polynomials of the second kind $U_n{x}$ to aid us in the calculation of the set $\{d_{n}\}$. +These polynomials are defined by +```math +\begin{equation} +U_{0}(x) = 1, \quad U_{1}(x) = 2x, \quad U_{n+1} = 2 x U_{n}(x) - U_{n-1}(x). +\end{equation} +``` +Note the useful relations +```math +\begin{equation} +\frac{d T_{n}}{d x} = n U_{n-1}, {\rm~for~}n\geq 1, \quad \frac{d T_{0}}{d x} = 0, +\end{equation} +``` +```math +\begin{equation} +T_{n} = \frac{1}{2}\left(U_{n} - U_{n -2}\right), T_{0} = U_{0}\quad, {\rm ~and~} \quad 2 T_{1} = U_{1}. +\end{equation} +``` +Using these identities, which may be obtained from the trigonometric definition of $U_{n}(\cos \theta)$ +```math +\begin{equation} +U_{n}(\cos \theta) \sin \theta = \sin \left((n+1)\theta\right), +\end{equation} +``` +we find that equation (5) becomes +```math +\begin{equation} +\begin{split}\sum^N_{n=1} a_{n} n U_{n-1}(x) =& \frac{d_{N-1}}{2}U_{N-1}+\frac{d_{N-2}}{2}U_{N-2} +\\ & + \sum^{N-3}_{k=1} \frac{d_{k}-d_{k+2}}{2}U_{k} + \left(d_{0} - \frac{d_{2}}{2}\right)U_{0}. \end{split}\tag{6} +\end{equation} +``` +Using the orthogonality relation +```math +\begin{equation} +\int^1_{-1} U_{m}(x)U_{n}(x)\sqrt{1-x^2} \; d x = +\left\{\begin{array}{l} 0 {\rm ~if~} n\neq m \\ \pi/2 {\rm ~if~} n=m \\ \end{array} \right. +\end{equation} +``` +we obtain the (unqiuely-determined) relations +```math +\begin{equation} +\begin{split} &d_{N-1} = 2Na_{N},\quad d_{N-2} = 2(N-1)a_{N-1}, \\ +& d_{k} = 2(k+1) a_{k+1} + d_{k+2}, \quad d_{0} = \frac{d_{2}}{2} + a_{1}.\end{split}\tag{7} +\end{equation} +``` + +Clenshaw-Curtis integration weights +=============================================== + +We require the integration weights for the set of points $\{x_j\}$ chosen +in our numerical scheme. The weights $w_{j}$ are defined implicitly by +```math +\begin{equation} +\int^{1}_{-1} f(x) \; d x = \sum_{j=0}^N f(x_j) w_{j}.\tag{8} +\end{equation} +``` +In the Chebyshev scheme we use the change of variables $x = \cos \theta$ +to write +```math +\begin{equation} +\int^{1}_{-1} f(x) \; d x = \int^\pi_0 f(\cos\theta) \sin \theta \; d \theta .\tag{9} +\end{equation} +``` + Using the series expansion (1) in equation (9) + we find that +```math +\begin{equation} +\int^{1}_{-1} f(x) \; d x = \sum^N_{n=0} a_{n}\int^\pi_0 \cos (n \theta) \sin \theta \; d \theta +.\tag{10} +\end{equation} +``` +Note the integral identity +```math +\begin{equation} +\int^\pi_0 \cos(n \theta) \sin \theta \; d \theta = \frac{\cos(n \pi) +1}{1 - n^2} {\rm~for~} n \geq 0. +\end{equation} +``` +Also note that +```math +\begin{equation} +\frac{\cos(n \pi) +1}{1 - n^2} = \left\{\begin{array}{l} 0 {\rm ~if~} n = 2 r + 1, ~r \in \mathbb{Z} \\ 2/(1 - n^2) {\rm ~if~} n=2r,~r. \in \mathbb{Z} \end{array}\right. +\end{equation} +``` +We define +```math +\begin{equation} +J_{n} = \frac{\cos(n \pi) +1}{1 - n^2}. +\end{equation} +``` +Using this definition, we can write the integral of $f(x)$ can be written +in terms of a sum over of the Chebyshev coefficients: +```math +\begin{equation} +\int^{1}_{-1} f(x) \; d x = \sum_{n=0}^N J_{n} a_{n}.\tag{11} +\end{equation} +``` +To avoid computing the set of coefficients $\{a_{n}\}$ every time we wish to integrate $f(x_j)$, +we use the inverse transforms. This transform allows us to rewrite equation (11) in the form (8). +Since the inverse transform differs between the Gauss-Chebyshev-Lobotto and Gauss-Chebyshev-Radau cases, we treat each +case separately below. + +Weights on Gauss-Chebyshev-Lobotto points +=============================================== +We use the inverse transformation +```math +\begin{equation} +a_{n} = \frac{q_{n}}{2N}\sum^{2N-1}_{j=0} \hat{f}_j \exp\left[- i \frac{2\pi n j}{2N}\right], \tag{12} +\end{equation} +``` +where +```math +\begin{equation} +q_{n} = \left\{\begin{array}{l} 2 {\rm ~if~} n\neq0,N \\ 1 {\rm ~if~} n=0,N \end{array}\right. +\end{equation} +``` +and $\hat{f}_j$ is $f(x_j)$ on the extended domain in FFT order, i.e., +```math +\begin{equation} +\hat{f}_j = f(x_{j}) {\rm~for~} 0 \leq j \leq N ,\quad \hat{f}_j = f(x_{2N-j}){\rm~for~} N+1 \leq j \leq 2N-1. +\end{equation} +``` +With this inverse tranformation, we can write +```math +\begin{equation} +\begin{split}\sum_{n=0}^N J_{n} a_{n} & = \sum^{2N-1}_{n=0} \frac{a_{n}J_{n}}{q_{n}} \\ +& = \sum^{2N-1}_{j=0}\sum^{2N-1}_{n=0} \frac{\hat{f}_j J_{n}}{2N} \exp\left[-i \frac{2\pi n j}{2N}\right] \\ +& = \sum^{2N-1}_{j=0} \hat{f}_j v_{j} = \sum^{N}_{j=0} \hat{f}_j q_{j}v_{j},\end{split}\tag{13} +\end{equation} +``` +where in the first step we have extended the sum from $N$ to $2N-1$ and used FFT-order definitions of $J_{n}$ and $a_{n}$ +```math +\begin{equation} +J_{j} = J_{2N-j}, {\rm~for~} N+1 \leq j \leq 2N-1, +\end{equation} +``` +```math +\begin{equation} +a_{j} = a_{2N-j}, {\rm~for~} N+1 \leq j \leq 2N-1. +\end{equation} +``` +In the second step we use the definition of the inverse transform (14) , and +in the third step we define +```math +\begin{equation} +v_{j} = \sum_{n=0}^{2N-1}\frac{J_{n}}{2N}\exp\left[-i \frac{2\pi n j}{2N}\right]. +\end{equation} +``` +Finally, we can compare equations (8) and (13) and deduce that +```math +\begin{equation} +w_{j} = q_{j}v_{j} {\rm~for~} 0 \leq j \leq N. +\end{equation} +``` +We can write $v_{j}$ in terms of a discrete cosine transform, i.e., +```math +\begin{equation} +v_{j} = \frac{1}{2N}\left(J_{0} + (-1)^jJ_{N} + 2\sum_{n=1}^{N-1}J_{n}\cos\left(\frac{\pi n j}{N}\right)\right). +\end{equation} +``` + +Weights on Gauss-Chebyshev-Radau points +=============================================== +We use the inverse transformation +```math +\begin{equation} +a_{n} = \frac{q_{n}}{2N+1}\sum^{2N}_{j=0} \hat{f}_j \exp\left[- i \frac{2\pi n j}{2N+1}\right],\tag{14} +\end{equation} +``` +where +```math +\begin{equation} +q_{n} = \left\{\begin{array}{l} 2 {\rm ~if~} n > 0 \\ 1 {\rm ~if~} n=0 \end{array}\right. +\end{equation} +``` +and $\hat{f}_j$ is $f(x_j)$ on the extended domain in FFT order, i.e., +```math +\begin{equation} +\hat{f}_j = f(x_{j}) {\rm~for~} 0 \leq j \leq N ,\quad \hat{f}_j = f(x_{2N-j+1}){\rm~for~} N+1 \leq j \leq 2N. +\end{equation} +``` +Note that the details of what is the appropriate FFT order depends on the order in which the points $x_j$ are stored. +The key detail in the Chebyshev-Radau scheme is that (in the notation above) +$x_0 = 1$ is not a repeated point, and must occupy $\hat{f}_0$. +With this inverse tranformation, we can write +```math +\begin{equation} +\begin{split}\sum_{n=0}^N J_{n} a_{n} & = \sum^{2N}_{n=0} \frac{a_{n}J_{n}}{q_{n}} \\ +& = \sum^{2N}_{j=0}\sum^{2N}_{n=0} \frac{\hat{f}_j J_{n}}{2N+1} \exp\left[-i \frac{2\pi n j}{2N+1}\right] \\ +& = \sum^{2N}_{j=0} \hat{f}_j v_{j} = \sum^{N}_{j=0} \hat{f}_j q_{j}v_{j},\end{split}\tag{15}\end{equation} +``` +where in the first step we have extended the sum from $N$ to $2N$ and used FFT-order definitions of $J_{n}$ and $a_{n}$ +```math +\begin{equation} +J_{j} = J_{2N+1-j}, {\rm~for~} N+1 \leq j \leq 2N, +\end{equation} +``` +```math +\begin{equation} +a_{j} = a_{2N+1-j}, {\rm~for~} N+1 \leq j \leq 2N. +\end{equation} +``` +In the second step we use the definition of the inverse transform (14), and +in the third step we define +```math +\begin{equation} +v_{j} = \sum_{n=0}^{2N}\frac{J_{n}}{2N+1}\exp\left[-i \frac{2\pi n j}{2N+1}\right]. +\end{equation} +``` +Finally, we can compare equations (8) and (15) and deduce that +```math +\begin{equation} +w_{j} = q_{j}v_{j} {\rm~for~} 0 \leq j \leq N. +\end{equation} +```