-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathcriterion.py
402 lines (336 loc) · 15.8 KB
/
criterion.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
# Copyright (c) Facebook, Inc. and its affiliates.
import torch
import torch.nn as nn
import numpy as np
import torch.nn.functional as F
from utils.box_util import generalized_box3d_iou
from utils.dist import all_reduce_average
from utils.misc import huber_loss
from scipy.optimize import linear_sum_assignment
class Matcher(nn.Module):
def __init__(self, cost_class, cost_objectness, cost_giou, cost_center):
"""
Parameters:
cost_class:
Returns:
"""
super().__init__()
self.cost_class = cost_class
self.cost_objectness = cost_objectness
self.cost_giou = cost_giou
self.cost_center = cost_center
@torch.no_grad()
def forward(self, outputs, targets):
batchsize = outputs["sem_cls_prob"].shape[0]
nqueries = outputs["sem_cls_prob"].shape[1]
ngt = targets["gt_box_sem_cls_label"].shape[1]
nactual_gt = targets["nactual_gt"]
# classification cost: batch x nqueries x ngt matrix
pred_cls_prob = outputs["sem_cls_prob"]
gt_box_sem_cls_labels = (
targets["gt_box_sem_cls_label"]
.unsqueeze(1)
.expand(batchsize, nqueries, ngt)
)
class_mat = -torch.gather(pred_cls_prob, 2, gt_box_sem_cls_labels)
# objectness cost: batch x nqueries x 1
objectness_mat = -outputs["objectness_prob"].unsqueeze(-1)
# center cost: batch x nqueries x ngt
center_mat = outputs["center_dist"].detach()
# giou cost: batch x nqueries x ngt
giou_mat = -outputs["gious"].detach()
final_cost = (
self.cost_class * class_mat
+ self.cost_objectness * objectness_mat
+ self.cost_center * center_mat
+ self.cost_giou * giou_mat
)
final_cost = final_cost.detach().cpu().numpy()
assignments = []
# auxiliary variables useful for batched loss computation
batch_size, nprop = final_cost.shape[0], final_cost.shape[1]
per_prop_gt_inds = torch.zeros(
[batch_size, nprop], dtype=torch.int64, device=pred_cls_prob.device
)
proposal_matched_mask = torch.zeros(
[batch_size, nprop], dtype=torch.float32, device=pred_cls_prob.device
)
for b in range(batchsize):
assign = []
if nactual_gt[b] > 0:
assign = linear_sum_assignment(final_cost[b, :, : nactual_gt[b]])
assign = [
torch.from_numpy(x).long().to(device=pred_cls_prob.device)
for x in assign
]
per_prop_gt_inds[b, assign[0]] = assign[1]
proposal_matched_mask[b, assign[0]] = 1
assignments.append(assign)
return {
"assignments": assignments,
"per_prop_gt_inds": per_prop_gt_inds,
"proposal_matched_mask": proposal_matched_mask,
}
class SetCriterion(nn.Module):
def __init__(self, matcher, dataset_config, loss_weight_dict):
super().__init__()
self.dataset_config = dataset_config
self.matcher = matcher
self.loss_weight_dict = loss_weight_dict
semcls_percls_weights = torch.ones(dataset_config.num_semcls + 1)
semcls_percls_weights[-1] = loss_weight_dict["loss_no_object_weight"]
del loss_weight_dict["loss_no_object_weight"]
self.register_buffer("semcls_percls_weights", semcls_percls_weights)
self.loss_functions = {
"loss_sem_cls": self.loss_sem_cls,
"loss_angle": self.loss_angle,
"loss_center": self.loss_center,
"loss_size": self.loss_size,
"loss_giou": self.loss_giou,
# this isn't used during training and is logged for debugging.
# thus, this loss does not have a loss_weight associated with it.
"loss_cardinality": self.loss_cardinality,
}
@torch.no_grad()
def loss_cardinality(self, outputs, targets, assignments):
# Count the number of predictions that are objects
# Cardinality is the error between predicted #objects and ground truth objects
pred_logits = outputs["sem_cls_logits"]
# Count the number of predictions that are NOT "no-object" (which is the last class)
pred_objects = (pred_logits.argmax(-1) != pred_logits.shape[-1] - 1).sum(1)
card_err = F.l1_loss(pred_objects.float(), targets["nactual_gt"])
return {"loss_cardinality": card_err}
def loss_sem_cls(self, outputs, targets, assignments):
# # Not vectorized version
# pred_logits = outputs["sem_cls_logits"]
# assign = assignments["assignments"]
# sem_cls_targets = torch.ones((pred_logits.shape[0], pred_logits.shape[1]),
# dtype=torch.int64, device=pred_logits.device)
# # initialize to background/no-object class
# sem_cls_targets *= (pred_logits.shape[-1] - 1)
# # use assignments to compute labels for matched boxes
# for b in range(pred_logits.shape[0]):
# if len(assign[b]) > 0:
# sem_cls_targets[b, assign[b][0]] = targets["gt_box_sem_cls_label"][b, assign[b][1]]
# sem_cls_targets = sem_cls_targets.view(-1)
# pred_logits = pred_logits.reshape(sem_cls_targets.shape[0], -1)
# loss = F.cross_entropy(pred_logits, sem_cls_targets, self.semcls_percls_weights, reduction="mean")
pred_logits = outputs["sem_cls_logits"]
gt_box_label = torch.gather(
targets["gt_box_sem_cls_label"], 1, assignments["per_prop_gt_inds"]
)
gt_box_label[assignments["proposal_matched_mask"].int() == 0] = (
pred_logits.shape[-1] - 1
)
loss = F.cross_entropy(
pred_logits.transpose(2, 1),
gt_box_label,
self.semcls_percls_weights,
reduction="mean",
)
return {"loss_sem_cls": loss}
def loss_angle(self, outputs, targets, assignments):
angle_logits = outputs["angle_logits"]
angle_residual = outputs["angle_residual_normalized"]
if targets["num_boxes_replica"] > 0:
gt_angle_label = targets["gt_angle_class_label"]
gt_angle_residual = targets["gt_angle_residual_label"]
gt_angle_residual_normalized = gt_angle_residual / (
np.pi / self.dataset_config.num_angle_bin
)
# # Non vectorized version
# assignments = assignments["assignments"]
# p_angle_logits = []
# p_angle_resid = []
# t_angle_labels = []
# t_angle_resid = []
# for b in range(angle_logits.shape[0]):
# if len(assignments[b]) > 0:
# p_angle_logits.append(angle_logits[b, assignments[b][0]])
# p_angle_resid.append(angle_residual[b, assignments[b][0], gt_angle_label[b][assignments[b][1]]])
# t_angle_labels.append(gt_angle_label[b, assignments[b][1]])
# t_angle_resid.append(gt_angle_residual_normalized[b, assignments[b][1]])
# p_angle_logits = torch.cat(p_angle_logits)
# p_angle_resid = torch.cat(p_angle_resid)
# t_angle_labels = torch.cat(t_angle_labels)
# t_angle_resid = torch.cat(t_angle_resid)
# angle_cls_loss = F.cross_entropy(p_angle_logits, t_angle_labels, reduction="sum")
# angle_reg_loss = huber_loss(p_angle_resid.flatten() - t_angle_resid.flatten()).sum()
gt_angle_label = torch.gather(
gt_angle_label, 1, assignments["per_prop_gt_inds"]
)
angle_cls_loss = F.cross_entropy(
angle_logits.transpose(2, 1), gt_angle_label, reduction="none"
)
angle_cls_loss = (
angle_cls_loss * assignments["proposal_matched_mask"]
).sum()
gt_angle_residual_normalized = torch.gather(
gt_angle_residual_normalized, 1, assignments["per_prop_gt_inds"]
)
gt_angle_label_one_hot = torch.zeros_like(
angle_residual, dtype=torch.float32
)
gt_angle_label_one_hot.scatter_(2, gt_angle_label.unsqueeze(-1), 1)
angle_residual_for_gt_class = torch.sum(
angle_residual * gt_angle_label_one_hot, -1
)
angle_reg_loss = huber_loss(
angle_residual_for_gt_class - gt_angle_residual_normalized, delta=1.0
)
angle_reg_loss = (
angle_reg_loss * assignments["proposal_matched_mask"]
).sum()
angle_cls_loss /= targets["num_boxes"]
angle_reg_loss /= targets["num_boxes"]
else:
angle_cls_loss = torch.zeros(1, device=angle_logits.device).squeeze()
angle_reg_loss = torch.zeros(1, device=angle_logits.device).squeeze()
return {"loss_angle_cls": angle_cls_loss, "loss_angle_reg": angle_reg_loss}
def loss_center(self, outputs, targets, assignments):
center_dist = outputs["center_dist"]
if targets["num_boxes_replica"] > 0:
# # Non vectorized version
# assign = assignments["assignments"]
# center_loss = torch.zeros(1, device=center_dist.device).squeeze()
# for b in range(center_dist.shape[0]):
# if len(assign[b]) > 0:
# center_loss += center_dist[b, assign[b][0], assign[b][1]].sum()
# select appropriate distances by using proposal to gt matching
center_loss = torch.gather(
center_dist, 2, assignments["per_prop_gt_inds"].unsqueeze(-1)
).squeeze(-1)
# zero-out non-matched proposals
center_loss = center_loss * assignments["proposal_matched_mask"]
center_loss = center_loss.sum()
if targets["num_boxes"] > 0:
center_loss /= targets["num_boxes"]
else:
center_loss = torch.zeros(1, device=center_dist.device).squeeze()
return {"loss_center": center_loss}
def loss_giou(self, outputs, targets, assignments):
gious_dist = 1 - outputs["gious"]
# # Non vectorized version
# giou_loss = torch.zeros(1, device=gious_dist.device).squeeze()
# assign = assignments["assignments"]
# for b in range(gious_dist.shape[0]):
# if len(assign[b]) > 0:
# giou_loss += gious_dist[b, assign[b][0], assign[b][1]].sum()
# select appropriate gious by using proposal to gt matching
giou_loss = torch.gather(
gious_dist, 2, assignments["per_prop_gt_inds"].unsqueeze(-1)
).squeeze(-1)
# zero-out non-matched proposals
giou_loss = giou_loss * assignments["proposal_matched_mask"]
giou_loss = giou_loss.sum()
if targets["num_boxes"] > 0:
giou_loss /= targets["num_boxes"]
return {"loss_giou": giou_loss}
def loss_size(self, outputs, targets, assignments):
gt_box_sizes = targets["gt_box_sizes_normalized"]
pred_box_sizes = outputs["size_normalized"]
if targets["num_boxes_replica"] > 0:
# # Non vectorized version
# p_sizes = []
# t_sizes = []
# assign = assignments["assignments"]
# for b in range(pred_box_sizes.shape[0]):
# if len(assign[b]) > 0:
# p_sizes.append(pred_box_sizes[b, assign[b][0]])
# t_sizes.append(gt_box_sizes[b, assign[b][1]])
# p_sizes = torch.cat(p_sizes)
# t_sizes = torch.cat(t_sizes)
# size_loss = F.l1_loss(p_sizes, t_sizes, reduction="sum")
# construct gt_box_sizes as [batch x nprop x 3] matrix by using proposal to gt matching
gt_box_sizes = torch.stack(
[
torch.gather(
gt_box_sizes[:, :, x], 1, assignments["per_prop_gt_inds"]
)
for x in range(gt_box_sizes.shape[-1])
],
dim=-1,
)
size_loss = F.l1_loss(pred_box_sizes, gt_box_sizes, reduction="none").sum(
dim=-1
)
# zero-out non-matched proposals
size_loss *= assignments["proposal_matched_mask"]
size_loss = size_loss.sum()
size_loss /= targets["num_boxes"]
else:
size_loss = torch.zeros(1, device=pred_box_sizes.device).squeeze()
return {"loss_size": size_loss}
def single_output_forward(self, outputs, targets, return_assignments=False):
gious = generalized_box3d_iou(
outputs["box_corners"],
targets["gt_box_corners"],
targets["nactual_gt"],
rotated_boxes=torch.any(targets["gt_box_angles"] > 0).item(),
needs_grad=(self.loss_weight_dict["loss_giou_weight"] > 0),
)
outputs["gious"] = gious
center_dist = torch.cdist(
outputs["center_normalized"], targets["gt_box_centers_normalized"], p=1
)
outputs["center_dist"] = center_dist
assignments = self.matcher(outputs, targets)
losses = {}
for k in self.loss_functions:
loss_wt_key = k + "_weight"
if (
loss_wt_key in self.loss_weight_dict
and self.loss_weight_dict[loss_wt_key] > 0
) or loss_wt_key not in self.loss_weight_dict:
# only compute losses with loss_wt > 0
# certain losses like cardinality are only logged and have no loss weight
curr_loss = self.loss_functions[k](outputs, targets, assignments)
losses.update(curr_loss)
final_loss = 0
for k in self.loss_weight_dict:
if self.loss_weight_dict[k] > 0:
losses[k.replace("_weight", "")] *= self.loss_weight_dict[k]
final_loss += losses[k.replace("_weight", "")]
if return_assignments:
return final_loss, losses, assignments
else:
return final_loss, losses
def forward(self, outputs, targets, return_assignments=False):
nactual_gt = targets["gt_box_present"].sum(axis=1).long()
num_boxes = torch.clamp(all_reduce_average(nactual_gt.sum()), min=1).item()
targets["nactual_gt"] = nactual_gt
targets["num_boxes"] = num_boxes
targets[
"num_boxes_replica"
] = nactual_gt.sum().item() # number of boxes on this worker for dist training
loss, loss_dict, assignments = self.single_output_forward(outputs["outputs"], targets, return_assignments=True)
if "aux_outputs" in outputs:
for k in range(len(outputs["aux_outputs"])):
interm_loss, interm_loss_dict = self.single_output_forward(
outputs["aux_outputs"][k], targets
)
loss += interm_loss
for interm_key in interm_loss_dict:
loss_dict[f"{interm_key}_{k}"] = interm_loss_dict[interm_key]
if return_assignments:
return loss, loss_dict, assignments
else:
return loss, loss_dict
def build_criterion(args, dataset_config):
matcher = Matcher(
cost_class=args.matcher_cls_cost,
cost_giou=args.matcher_giou_cost,
cost_center=args.matcher_center_cost,
cost_objectness=args.matcher_objectness_cost,
)
loss_weight_dict = {
"loss_giou_weight": args.loss_giou_weight,
"loss_sem_cls_weight": args.loss_sem_cls_weight,
"loss_no_object_weight": args.loss_no_object_weight,
"loss_angle_cls_weight": args.loss_angle_cls_weight,
"loss_angle_reg_weight": args.loss_angle_reg_weight,
"loss_center_weight": args.loss_center_weight,
"loss_size_weight": args.loss_size_weight,
}
criterion = SetCriterion(matcher, dataset_config, loss_weight_dict)
return criterion