We adopt the separate dataset embedding for testing.
./tools/dist.sh gen_cls seg/configs/m2ov_val/eval_m2_convl_300q_ov_coco.py 1
./tools/dist.sh gen_cls seg/configs/m2ov_val/eval_m2_convl_300q_ov_ade.py 1
./tools/dist.sh gen_cls seg/configs/m2ov_val/eval_m2_convl_300q_ov_cityscapes.py 1
./tools/dist.sh gen_cls seg/configs/m2ov_val/eval_m2_convl_300q_ov_vipseg.py 1
./tools/dist.sh gen_cls seg/configs/m2ov_val/eval_m2_convl_300q_ov_y19.py 1
./tools/dist.sh gen_cls seg/configs/m2ov_val/eval_m2_convl_300q_ov_y21.py 1
We adopt the merged dataset embedding for training.
./tools/dist.sh gen_cls seg/configs/m2ov_train/omg_convl_vlm_fix_24e_ov_coco_vid_yt19_vip_city_cocopansam.py 1
Once you finish converting the embedding, you will obtain the embedding file in your cache folder.
When generating the class embedding classifier, the scripts will automatically download the pre-trained CLIP models.
If you are in China, you can use HF-Mirror. Follow the step to set the default path.
pip install -U huggingface_hub
export HF_ENDPOINT=https://hf-mirror.com