forked from instillai/TensorFlow-Course
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrnn.py
99 lines (79 loc) · 3.22 KB
/
rnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
import argparse
# Useful function for arguments.
def str2bool(v):
return v.lower() in ("yes", "true")
# Parser
parser = argparse.ArgumentParser(description='Creating Classifier')
######################
# Optimization Flags #
######################
tf.app.flags.DEFINE_float('learning_rate', default=0.001, help='initial learning rate')
tf.app.flags.DEFINE_integer('seed', default=111, help='seed')
##################
# Training Flags #
##################
tf.app.flags.DEFINE_integer('batch_size', default=128, help='Batch size for training')
tf.app.flags.DEFINE_integer('num_epoch', default=10, help='Number of training iterations')
tf.app.flags.DEFINE_integer('batch_per_log', default=10, help='Print the log at what number of batches?')
###############
# Model Flags #
###############
tf.app.flags.DEFINE_integer('hidden_size', default=128, help='Number of neurons for RNN hodden layer')
# Store all elemnts in FLAG structure!
args = tf.app.flags.FLAGS
# Reset the graph set the random numbers to be the same using "seed"
tf.reset_default_graph()
tf.set_random_seed(args.seed)
np.random.seed(args.seed)
# Divide 28x28 images to rows of data to feed to RNN as sequantial information
step_size = 28
input_size = 28
output_size = 10
# Input tensors
X = tf.placeholder(tf.float32, [None, step_size, input_size])
y = tf.placeholder(tf.int32, [None])
# Rnn
cell = tf.nn.rnn_cell.BasicRNNCell(num_units=args.hidden_size)
output, state = tf.nn.dynamic_rnn(cell, X, dtype=tf.float32)
# Forward pass and loss calcualtion
logits = tf.layers.dense(state, output_size)
cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=y, logits=logits)
loss = tf.reduce_mean(cross_entropy)
# optimizer
optimizer = tf.train.AdamOptimizer(learning_rate=args.learning_rate).minimize(loss)
# Prediction
prediction = tf.nn.in_top_k(logits, y, 1)
accuracy = tf.reduce_mean(tf.cast(prediction, tf.float32))
# input data
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("MNIST_data/")
# Process MNIST
X_test = mnist.test.images # X_test shape: [num_test, 28*28]
X_test = X_test.reshape([-1, step_size, input_size])
y_test = mnist.test.labels
# initialize the variables
init = tf.global_variables_initializer()
# Empty list for tracking
loss_train_list = []
acc_train_list = []
# train the model
with tf.Session() as sess:
sess.run(init)
n_batches = mnist.train.num_examples // args.batch_size
for epoch in range(args.num_epoch):
for batch in range(n_batches):
X_train, y_train = mnist.train.next_batch(args.batch_size)
X_train = X_train.reshape([-1, step_size, input_size])
sess.run(optimizer, feed_dict={X: X_train, y: y_train})
loss_train, acc_train = sess.run(
[loss, accuracy], feed_dict={X: X_train, y: y_train})
loss_train_list.append(loss_train)
acc_train_list.append(acc_train)
print('Epoch: {}, Train Loss: {:.3f}, Train Acc: {:.3f}'.format(
epoch + 1, loss_train, acc_train))
loss_test, acc_test = sess.run(
[loss, accuracy], feed_dict={X: X_test, y: y_test})
print('Test Loss: {:.3f}, Test Acc: {:.3f}'.format(loss_test, acc_test))