forked from EthanPhan/document_dewarp
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpage_dewarp.py
executable file
·1034 lines (719 loc) · 27.7 KB
/
page_dewarp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#!/usr/bin88/env python
######################################################################
# page_dewarp.py - Proof-of-concept of page-dewarping based on a
# "cubic sheet" model. Requires OpenCV (version 3 or greater),
# PIL/Pillow, and scipy.optimize.
######################################################################
# Author: Matt Zucker
# Date: July 2016
# License: MIT License (see LICENSE.txt)
######################################################################
import os
import sys
import datetime
import cv2
from PIL import Image
import numpy as np
import scipy.optimize
from scipy.integrate import quad
from scipy.optimize import minimize, least_squares, root
from numpy.linalg import norm
import levmar
# for some reason pylint complains about cv2 members being undefined :(
# pylint: disable=E1101
PAGE_MARGIN_X = 50 # reduced px to ignore near L/R edge
PAGE_MARGIN_Y = 20 # reduced px to ignore near T/B edge
OUTPUT_ZOOM = 1.0 # how much to zoom output relative to *original* image
OUTPUT_DPI = 300 # just affects stated DPI of PNG, not appearance
REMAP_DECIMATE = 16 # downscaling factor for remapping image
ADAPTIVE_WINSZ = 55 # window size for adaptive threshold in reduced px
TEXT_MIN_WIDTH = 15 # min reduced px width of detected text contour
TEXT_MIN_HEIGHT = 2 # min reduced px height of detected text contour
TEXT_MIN_ASPECT = 1.5 # filter out text contours below this w/h ratio
TEXT_MAX_THICKNESS = 10 # max reduced px thickness of detected text contour
EDGE_MAX_OVERLAP = 1.0 # max reduced px horiz. overlap of contours in span
EDGE_MAX_LENGTH = 100.0 # max reduced px length of edge connecting contours
EDGE_ANGLE_COST = 10.0 # cost of angles in edges (tradeoff vs. length)
EDGE_MAX_ANGLE = 7.5 # maximum change in angle allowed between contours
RVEC_IDX = slice(0, 3) # index of rvec in params vector
TVEC_IDX = slice(3, 6) # index of tvec in params vector
SURF_IDX = slice(6, 11) # index of cubic slopes in params vector
SPAN_MIN_WIDTH = 30 # minimum reduced px width for span
SPAN_PX_PER_STEP = 10 # reduced px spacing for sampling along spans
FOCAL_LENGTH = 1.2 # normalized focal length of camera
DEBUG_LEVEL = 0 # 0=none, 1=some, 2=lots, 3=all
DEBUG_OUTPUT = 'file' # file, screen, both
WINDOW_NAME = 'Dewarp' # Window name for visualization
# nice color palette for visualizing contours, etc.
CCOLORS = [
(255, 0, 0),
(255, 63, 0),
(255, 127, 0),
(255, 191, 0),
(255, 255, 0),
(191, 255, 0),
(127, 255, 0),
(63, 255, 0),
(0, 255, 0),
(0, 255, 63),
(0, 255, 127),
(0, 255, 191),
(0, 255, 255),
(0, 191, 255),
(0, 127, 255),
(0, 63, 255),
(0, 0, 255),
(63, 0, 255),
(127, 0, 255),
(191, 0, 255),
(255, 0, 255),
(255, 0, 191),
(255, 0, 127),
(255, 0, 63),
]
# default intrinsic parameter matrix
K = np.array([
[FOCAL_LENGTH, 0, 0],
[0, FOCAL_LENGTH, 0],
[0, 0, 1]], dtype=np.float32)
params = None
def g(x, a):
""" The polynomial function that describe the document surface
:returns: Z value
:rtype: scalar
"""
X = np.array([np.power(x, i) for i in range(5)])
return np.dot(a, X)
def g_prime(x, a):
X = np.array([i * np.power(x, i - 1) for i in range(1, 5)])
return np.dot(a[1:], X)
def compute_u_from_x(x, pvec):
A = pvec[SURF_IDX]
def func(t, a):
return np.sqrt(1 + g_prime(t, a) ** 2)
u = quad(func, 0, x, args=(A,))[0]
return u
# Newton-Raphson method
def newton(func, x0, fprime=None, args=(), tol=1.48e-8, maxiter=100,
fprime2=None):
x = x0
F_value = func(x)
F_norm = np.linalg.norm(F_value, ord=2) # l2 norm of vector
iteration_counter = 0
while abs(F_norm) > tol and iteration_counter < maxiter:
delta = np.linalg.solve(fprime(x), -F_value)
x = x + delta
F_value = func(x)
F_norm = np.linalg.norm(F_value, ord=2)
iteration_counter += 1
# Here, either a solution is found, or too many iterations
if abs(F_norm) > tol:
iteration_counter = -1
return x, iteration_counter
def remap_xy(xy_coords, pvec):
alpha, beta = xy_coords[0][0], xy_coords[0][1]
A = pvec[SURF_IDX]
R = pvec[RVEC_IDX].reshape((1, 3))
rmat, _ = cv2.Rodrigues(R)
P = np.array([alpha, beta, -FOCAL_LENGTH], dtype=np.float)
O = np.array([0, 0, FOCAL_LENGTH], dtype=np.float)
def intersect_func(x):
""" Function to find the intersect between the document surface
and the ray
X*r1 + Y * r2 + g(X) * r3 + O - p * t = 0
:param x: [Xik, Yik, tik]
:returns: the value of the function
:rtype: a vector of shape 3
"""
XYZ = np.array([x[0], x[1], g(x[0], A)])
ret = np.matmul(XYZ, rmat) + O - P * x[2]
return ret
def intersect_func_prime(x):
""" function that compute derevative of the intersect_func
dx = r1 + g_prime(x)
dy = r2
dt = - p
:param x: [Xik, Yik, tik]
:returns: the value of the derevative function
"""
dx = rmat.T[:, 0] + g_prime(x[0], A) * rmat.T[:, 2]
dy = rmat.T[:, 1]
dt = -P
dx = np.expand_dims(dx, axis=0)
dy = np.expand_dims(dy, axis=0)
dt = np.expand_dims(dt, axis=0)
ret = np.concatenate((dx, dy, dt), axis=0).T
return ret
x0 = np.array([0, 0, remap_xy.t])
root, iteration = newton(intersect_func, x0, fprime=intersect_func_prime)
X = root[0]
Y = root[1]
'''
print(alpha, beta)
print(root)
print('--------------------------------------------')
'''
remap_xy.t = root[2]
v = Y
u = compute_u_from_x(X, pvec)
return u, v, remap_xy.t, X, Y
remap_xy.t = 0
def get_projected_xy(xy_coords, pvec):
u, v, _, _, _ = remap_xy(xy_coords, pvec)
return [-u, -v]
def get_l_from_pvec(line_idx, pvec):
return pvec[11 + line_idx]
def straight_text_line_cost(pvec, line_points):
ret = []
for i, points in enumerate(line_points):
l = get_l_from_pvec(i, pvec)
for p in points:
_, v, _, _, _ = remap_xy(p, pvec)
ret.append(v - l)
ret = np.array(ret)
print('----------- cost', np.mean(np.abs(ret)))
return ret
def dtdphi(i, rmat, drdphi, t, p, X, a):
dr1dphi_i = drdphi[i, :3]
dr3dphi_i = drdphi[i, 6:9]
dr13dphi_i = drdphi[i, 2]
dr33dphi_i = drdphi[i, 8]
A = np.dot(dr1dphi_i, p * t) - dr13dphi_i * FOCAL_LENGTH
B = np.dot(rmat[0, :], p)
C = np.dot(dr3dphi_i, p * t) - dr33dphi_i * FOCAL_LENGTH
D = np.dot(rmat[2, :], p)
gpr_x = g_prime(X, a)
ret = - (C - gpr_x * A) / (D - gpr_x * B)
return ret
def dEdphi(pvec, point):
R = pvec[RVEC_IDX].reshape((1, 3))
A = pvec[SURF_IDX]
rmat, drdphi = cv2.Rodrigues(R)
ret = []
for i in range(3):
_, v, t, X, _ = remap_xy(point, pvec)
alpha, beta = point[0][0], point[0][1]
p = np.array([alpha, beta, -FOCAL_LENGTH], dtype=np.float)
dr2 = drdphi[i, 3:6]
r2 = rmat[1, :]
dt = dtdphi(i, rmat, drdphi, t, p, X, A)
dr23 = drdphi[i, 5]
jac = np.dot(dr2, t * p) + np.dot(r2, p * dt) - dr23 * FOCAL_LENGTH
ret.append(jac)
return np.array(ret)
def dtda(rmat, p, X, a):
ret = []
for i in range(5):
r3 = rmat[2, :]
r1 = rmat[0, :]
gpr_x = g_prime(X, a)
jac = (X ** i) / np.dot((r3 - gpr_x * r1), p)
ret.append(jac)
return np.array(ret)
def dEda(pvec, point):
R = pvec[RVEC_IDX].reshape((1, 3))
A = pvec[SURF_IDX]
rmat, _ = cv2.Rodrigues(R)
_, v, t, X, _ = remap_xy(point, pvec)
alpha, beta = point[0][0], point[0][1]
p = np.array([alpha, beta, -FOCAL_LENGTH], dtype=np.float)
r2 = rmat[1, :]
dt = dtda(rmat, p, X, A)
ret = np.dot(r2, p) * dt
return ret
def dEdl(pvec, line_points):
ret = []
for j, points in enumerate(line_points):
l = get_l_from_pvec(j, pvec)
jac = 0
for pt in points:
_, v, _, _, _ = remap_xy(pt, pvec)
jac += -2 * (v - l)
ret.append(jac)
return np.array(ret)
def straight_text_line_cost_prime(pvec, line_points):
ret = []
for j, points in enumerate(line_points):
for pt in points:
# compute dE/d_phi1
dphi = dEdphi(pvec, pt)
# print('drvec', dphi)
# print('rvec', pvec[RVEC_IDX])
# compute dE/dam
da = dEda(pvec, pt) * 0.2
# da = np.zeros(5)
da[0] = 0.0
# print('da', da)
dtvec = np.zeros(3)
# compute dE/Dl
dl = np.zeros_like(pvec[11:])
dl[j] = -1
# print(dl)
ret.append(np.hstack((dphi, dtvec, da, dl)))
return np.array(ret)
def objective(pvec, line_points):
ret = straight_text_line_cost(pvec, line_points)
return ret
def objective_prime(pvec, line_points):
return straight_text_line_cost_prime(pvec, line_points)
def optimize_params(pvec, line_points):
'''
pvec = minimize(objective,
pvec, method='Powell', args=(line_points,)).x
'''
pvec = least_squares(objective, pvec, args=(line_points,),
method='lm', jac=objective_prime, verbose=1).x
return pvec
def debug_show(name, step, text, display):
if DEBUG_OUTPUT != 'screen':
filetext = text.replace(' ', '_')
outfile = name + '_debug_' + str(step) + '_' + filetext + '.png'
cv2.imwrite(outfile, display)
if DEBUG_OUTPUT != 'file':
image = display.copy()
height = image.shape[0]
cv2.putText(image, text, (16, height-16),
cv2.FONT_HERSHEY_SIMPLEX, 1.0,
(0, 0, 0), 3, cv2.LINE_AA)
cv2.putText(image, text, (16, height-16),
cv2.FONT_HERSHEY_SIMPLEX, 1.0,
(255, 255, 255), 1, cv2.LINE_AA)
cv2.imshow(WINDOW_NAME, image)
while cv2.waitKey(5) < 0:
pass
def round_nearest_multiple(i, factor):
i = int(i)
rem = i % factor
if not rem:
return i
else:
return i + factor - rem
def pix2norm(shape, pts):
height, width = shape[:2]
scl = 2.0/(max(height, width))
offset = np.array([width, height], dtype=pts.dtype).reshape((-1, 1, 2))*0.5
return (pts - offset) * scl
def norm2pix(shape, pts, as_integer):
height, width = shape[:2]
scl = max(height, width)*0.5
offset = np.array([0.5*width, 0.5*height],
dtype=pts.dtype).reshape((-1, 1, 2))
rval = pts * scl + offset
if as_integer:
return (rval + 0.5).astype(int)
else:
return rval
def fltp(point):
return tuple(point.astype(int).flatten())
def draw_correspondences(img, dstpoints, projpts):
display = img.copy()
dstpoints = norm2pix(img.shape, dstpoints, True)
projpts = norm2pix(img.shape, projpts, True)
for pts, color in [(projpts, (255, 0, 0)),
(dstpoints, (0, 0, 255))]:
for point in pts:
cv2.circle(display, fltp(point), 3, color, -1, cv2.LINE_AA)
for point_a, point_b in zip(projpts, dstpoints):
cv2.line(display, fltp(point_a), fltp(point_b),
(255, 255, 255), 1, cv2.LINE_AA)
return display
def estimate_l_from_y(span_points):
ret = []
for span in span_points:
l = np.mean(span[:, :, 1])
ret.append(-l)
return np.array(ret)
def get_default_params(small, span_points):
# page width and height
page_width = small.shape[1]
page_height = small.shape[0]
rough_dims = (page_width, page_height)
# our initial guess for the surface's coefficients
surface_params = [0.0, 0.0, 0.0, 0.0, 0.0]
# object points of flat page in 3D coordinates
corners_object3d = np.array([
[0, 0, 0],
[page_width, 0, 0],
[page_width, page_height, 0],
[0, page_height, 0]], dtype=np.float32)
corners = np.array([
[0, 0],
[page_width, 0],
[page_width, page_height],
[0, page_height]], dtype=np.float32)
# estimate rotation and translation from four 2D-to-3D point
# correspondences
_, rvec, tvec = cv2.solvePnP(corners_object3d,
corners, K, np.zeros(5))
tvec = [0, 0, FOCAL_LENGTH]
rvec = np.zeros(3)
# initialize l for all the spans
ls = estimate_l_from_y(span_points)
params = np.hstack((np.array(rvec).flatten(),
np.array(tvec).flatten(),
np.array(surface_params).flatten(),
ls.flatten()))
return params
def project_xy(xy_coords, pvec):
# get cubic polynomial coefficients given
#
# f(0) = 0, f'(0) = alpha
# f(1) = 0, f'(1) = beta
alpha, beta = tuple(pvec[CUBIC_IDX])
poly = np.array([
alpha + beta,
-2*alpha - beta,
alpha,
0])
xy_coords = xy_coords.reshape((-1, 2))
z_coords = np.polyval(poly, xy_coords[:, 0])
objpoints = np.hstack((xy_coords, z_coords.reshape((-1, 1))))
image_points, _ = cv2.projectPoints(objpoints,
pvec[RVEC_IDX],
pvec[TVEC_IDX],
K, np.zeros(5))
return image_points
def project_keypoints(pvec, keypoint_index):
xy_coords = pvec[keypoint_index]
xy_coords[0, :] = 0
return project_xy(xy_coords, pvec)
def resize_to_screen(src, maxw=1280, maxh=700, copy=False):
height, width = src.shape[:2]
scl_x = float(width)/maxw
scl_y = float(height)/maxh
scl = int(np.ceil(max(scl_x, scl_y)))
if scl > 1.0:
inv_scl = 1.0/scl
img = cv2.resize(src, (0, 0), None, inv_scl, inv_scl, cv2.INTER_AREA)
elif copy:
img = src.copy()
else:
img = src
return img
def box(width, height):
return np.ones((height, width), dtype=np.uint8)
def get_page_extents(small):
height, width = small.shape[:2]
xmin = PAGE_MARGIN_X
ymin = PAGE_MARGIN_Y
xmax = width-PAGE_MARGIN_X
ymax = height-PAGE_MARGIN_Y
page = np.zeros((height, width), dtype=np.uint8)
cv2.rectangle(page, (xmin, ymin), (xmax, ymax), (255, 255, 255), -1)
outline = np.array([
[xmin, ymin],
[xmin, ymax],
[xmax, ymax],
[xmax, ymin]])
return page, outline
def get_mask(name, small):
sgray = cv2.cvtColor(small, cv2.COLOR_RGB2GRAY)
mask = cv2.adaptiveThreshold(sgray, 255, cv2.ADAPTIVE_THRESH_MEAN_C,
cv2.THRESH_BINARY_INV,
ADAPTIVE_WINSZ,
25)
if DEBUG_LEVEL >= 3:
debug_show(name, 0.1, 'thresholded', mask)
mask = cv2.dilate(mask, box(9, 1))
if DEBUG_LEVEL >= 3:
debug_show(name, 0.2, 'dilated', mask)
mask = cv2.erode(mask, box(1, 3))
if DEBUG_LEVEL >= 3:
debug_show(name, 0.3, 'eroded', mask)
return mask
def interval_measure_overlap(int_a, int_b):
return min(int_a[1], int_b[1]) - max(int_a[0], int_b[0])
def angle_dist(angle_b, angle_a):
diff = angle_b - angle_a
while diff > np.pi:
diff -= 2*np.pi
while diff < -np.pi:
diff += 2*np.pi
return np.abs(diff)
def blob_mean_and_tangent(contour):
moments = cv2.moments(contour)
area = moments['m00']
mean_x = moments['m10'] / area
mean_y = moments['m01'] / area
moments_matrix = np.array([
[moments['mu20'], moments['mu11']],
[moments['mu11'], moments['mu02']]
]) / area
_, svd_u, _ = cv2.SVDecomp(moments_matrix)
center = np.array([mean_x, mean_y])
tangent = svd_u[:, 0].flatten().copy()
return center, tangent
class ContourInfo(object):
def __init__(self, contour, rect, mask):
self.contour = contour
self.rect = rect
self.mask = mask
self.center, self.tangent = blob_mean_and_tangent(contour)
self.angle = np.arctan2(self.tangent[1], self.tangent[0])
clx = [self.proj_x(point) for point in contour]
lxmin = min(clx)
lxmax = max(clx)
self.local_xrng = (lxmin, lxmax)
self.point0 = self.center + self.tangent * lxmin
self.point1 = self.center + self.tangent * lxmax
self.pred = None
self.succ = None
def proj_x(self, point):
return np.dot(self.tangent, point.flatten()-self.center)
def local_overlap(self, other):
xmin = self.proj_x(other.point0)
xmax = self.proj_x(other.point1)
return interval_measure_overlap(self.local_xrng, (xmin, xmax))
def generate_candidate_edge(cinfo_a, cinfo_b):
# we want a left of b (so a's successor will be b and b's
# predecessor will be a) make sure right endpoint of b is to the
# right of left endpoint of a.
if cinfo_a.point0[0] > cinfo_b.point1[0]:
tmp = cinfo_a
cinfo_a = cinfo_b
cinfo_b = tmp
x_overlap_a = cinfo_a.local_overlap(cinfo_b)
x_overlap_b = cinfo_b.local_overlap(cinfo_a)
overall_tangent = cinfo_b.center - cinfo_a.center
overall_angle = np.arctan2(overall_tangent[1], overall_tangent[0])
delta_angle = max(angle_dist(cinfo_a.angle, overall_angle),
angle_dist(cinfo_b.angle, overall_angle)) * 180/np.pi
# we want the largest overlap in x to be small
x_overlap = max(x_overlap_a, x_overlap_b)
dist = np.linalg.norm(cinfo_b.point0 - cinfo_a.point1)
if (dist > EDGE_MAX_LENGTH or
x_overlap > EDGE_MAX_OVERLAP or
delta_angle > EDGE_MAX_ANGLE):
return None
else:
score = dist + delta_angle*EDGE_ANGLE_COST
return (score, cinfo_a, cinfo_b)
def make_tight_mask(contour, xmin, ymin, width, height):
tight_mask = np.zeros((height, width), dtype=np.uint8)
tight_contour = contour - np.array((xmin, ymin)).reshape((-1, 1, 2))
cv2.drawContours(tight_mask, [tight_contour], 0,
(1, 1, 1), -1)
return tight_mask
def get_contours(name, small, line_img):
#mask = get_mask(name, small)
# cv2.imwrite('mask.jpg', mask)
retval, mask = cv2.threshold(line_img, 12, 255, cv2.THRESH_BINARY)
#retval, mask = cv2.threshold(mask, 12, 255, cv2.THRESH_BINARY)
_, contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL,
cv2.CHAIN_APPROX_NONE)
contours_out = []
for contour in contours:
rect = cv2.boundingRect(contour)
xmin, ymin, width, height = rect
if (width < TEXT_MIN_WIDTH or
height < TEXT_MIN_HEIGHT or
width < TEXT_MIN_ASPECT*height):
continue
tight_mask = make_tight_mask(contour, xmin, ymin, width, height)
if tight_mask.sum(axis=0).max() > TEXT_MAX_THICKNESS:
continue
contours_out.append(ContourInfo(contour, rect, tight_mask))
visualize_contours(name, small, contours_out)
return contours_out
def frange(start, stop, step=1.0):
while start < stop:
yield start
start += step
def sample_spans(shape, spans):
span_points = []
for span in spans:
contour_points = []
for cinfo in span:
yvals = np.arange(cinfo.mask.shape[0]).reshape((-1, 1))
totals = (yvals * cinfo.mask).sum(axis=0)
means = totals / cinfo.mask.sum(axis=0)
xmin, ymin = cinfo.rect[:2]
step = SPAN_PX_PER_STEP
start = ((len(means)-1) % step) // 2
for x in range(start, len(means), step):
contour_points.append((x+xmin, means[x]+ymin))
contour_points = np.array(contour_points,
dtype=np.float32).reshape((-1, 1, 2))
contour_points = pix2norm(shape, contour_points)
span_points.append(contour_points)
return span_points
def keypoints_from_samples(name, small, span_points):
all_evecs = np.array([[0.0, 0.0]])
all_weights = 0
for points in span_points:
print(points)
_, evec = cv2.PCACompute(points.reshape((-1, 2)),
None, maxComponents=1)
weight = np.linalg.norm(points[-1] - points[0])
evec = all_evecs / all_weights
x_dir = evec.flatten()
if x_dir[0] < 0:
x_dir = -x_dir
y_dir = np.array([-x_dir[1], x_dir[0]])
pagecoords = cv2.convexHull(page_outline)
pagecoords = pix2norm(pagemask.shape, pagecoords.reshape((-1, 1, 2)))
pagecoords = pagecoords.reshape((-1, 2))
px_coords = np.dot(pagecoords, x_dir)
py_coords = np.dot(pagecoords, y_dir)
px0 = px_coords.min()
px1 = px_coords.max()
py0 = py_coords.min()
py1 = py_coords.max()
p00 = px0 * x_dir + py0 * y_dir
p10 = px1 * x_dir + py0 * y_dir
p11 = px1 * x_dir + py1 * y_dir
p01 = px0 * x_dir + py1 * y_dir
corners = np.vstack((p00, p10, p11, p01)).reshape((-1, 1, 2))
ycoords = []
xcoords = []
for points in span_points:
pts = points.reshape((-1, 2))
px_coords = np.dot(pts, x_dir)
py_coords = np.dot(pts, y_dir)
ycoords.append(py_coords.mean() - py0)
xcoords.append(px_coords - px0)
visualize_span_points(name, small, span_points, corners)
return corners, np.array(ycoords), xcoords
def visualize_contours(name, small, cinfo_list):
regions = np.zeros_like(small)
for j, cinfo in enumerate(cinfo_list):
cv2.drawContours(regions, [cinfo.contour], 0,
CCOLORS[j % len(CCOLORS)], -1)
mask = (regions.max(axis=2) != 0)
display = small.copy()
display[mask] = (display[mask]/2) + (regions[mask]/2)
for j, cinfo in enumerate(cinfo_list):
color = CCOLORS[j % len(CCOLORS)]
color = tuple([c/4 for c in color])
cv2.circle(display, fltp(cinfo.center), 3,
(255, 255, 255), 1, cv2.LINE_AA)
cv2.line(display, fltp(cinfo.point0), fltp(cinfo.point1),
(255, 255, 255), 1, cv2.LINE_AA)
cv2.imwrite('contours.jpg', display)
debug_show(name, 1, 'contours', display)
def visualize_spans(name, small, pagemask, spans):
regions = np.zeros_like(small)
for i, span in enumerate(spans):
contours = [cinfo.contour for cinfo in span]
cv2.drawContours(regions, contours, -1,
CCOLORS[i*3 % len(CCOLORS)], -1)
mask = (regions.max(axis=2) != 0)
display = small.copy()
display[mask] = (display[mask]/2) + (regions[mask]/2)
# display[pagemask == 0] /= 4
cv2.imwrite('span.jpg', display)
debug_show(name, 2, 'spans', display)
def visualize_span_points(name, small, span_points, corners):
display = small.copy()
for i, points in enumerate(span_points):
points = norm2pix(small.shape, points, False)
mean, small_evec = cv2.PCACompute(points.reshape((-1, 2)),
None,
maxComponents=1)
dps = np.dot(points.reshape((-1, 2)), small_evec.reshape((2, 1)))
dpm = np.dot(mean.flatten(), small_evec.flatten())
point0 = mean + small_evec * (dps.min()-dpm)
point1 = mean + small_evec * (dps.max()-dpm)
for point in points:
cv2.circle(display, fltp(point), 3,
CCOLORS[i % len(CCOLORS)], -1, cv2.LINE_AA)
cv2.line(display, fltp(point0), fltp(point1),
(255, 255, 255), 1, cv2.LINE_AA)
cv2.polylines(display, [norm2pix(small.shape, corners, True)],
True, (255, 255, 255))
cv2.imwrite('span_points.jpg', display)
debug_show(name, 3, 'span points', display)
def imgsize(img):
height, width = img.shape[:2]
return '{}x{}'.format(width, height)
def make_keypoint_index(span_counts):
nspans = len(span_counts)
npts = sum(span_counts)
keypoint_index = np.zeros((npts+1, 2), dtype=int)
start = 1
for i, count in enumerate(span_counts):
end = start + count
keypoint_index[start:start+end, 1] = 8+i
start = end
keypoint_index[1:, 0] = np.arange(npts) + 8 + nspans
return keypoint_index
def get_page_dims(corners, rough_dims, params):
dst_br = corners[2].flatten()
dims = np.array(rough_dims)
def objective(dims):
proj_br = project_xy(dims, params)
return np.sum((dst_br - proj_br.flatten())**2)
res = scipy.optimize.minimize(objective, dims, method='Powell')
dims = res.x
print(' got page dims', dims[0], 'x', dims[1])
return dims
def remap_image(name, img, small, params):
height = 1.0 * OUTPUT_ZOOM * img.shape[0]
height = round_nearest_multiple(height, REMAP_DECIMATE)
width = round_nearest_multiple(height * small.shape[1] / small.shape[0],
REMAP_DECIMATE)
print(' output will be {}x{}'.format(width, height))
height_small = height / REMAP_DECIMATE
width_small = width / REMAP_DECIMATE
page_x_range = np.linspace(0, img.shape[1], width_small)
page_y_range = np.linspace(0, img.shape[0], height_small)
page_x_coords, page_y_coords = np.meshgrid(page_x_range, page_y_range)
page_xy_coords = np.hstack((page_x_coords.flatten().reshape((-1, 1)),
page_y_coords.flatten().reshape((-1, 1))))
page_xy_coords = page_xy_coords.astype(np.float32)
page_xy_coords = pix2norm(img.shape, page_xy_coords)
page_xy_coords = page_xy_coords.reshape((-1, 1, 2))
image_points = []
for i, p in enumerate(page_xy_coords):
prj_xy = get_projected_xy(p, params)
image_points.append(prj_xy)
image_points = np.array(image_points, dtype=np.float32)
image_points = image_points.reshape((-1, 1, 2))
image_points = norm2pix(img.shape, image_points, False)
image_x_coords = image_points[:, 0, 0].reshape(page_x_coords.shape)
image_y_coords = image_points[:, 0, 1].reshape(page_y_coords.shape)
image_x_coords = cv2.resize(image_x_coords, (width, height),
interpolation=cv2.INTER_LINEAR)
image_y_coords = cv2.resize(image_y_coords, (width, height),
interpolation=cv2.INTER_LINEAR)
remapped = cv2.remap(img, image_x_coords, image_y_coords,
cv2.INTER_CUBIC,
None, cv2.BORDER_REPLICATE)
pil_image = Image.fromarray(remapped)
pil_image.save(name + '_out.png', dpi=(OUTPUT_DPI, OUTPUT_DPI))
def main():
if len(sys.argv) < 2:
print('usage:', sys.argv[0], 'IMAGE1 [IMAGE2 ...]')
sys.exit(0)
if DEBUG_LEVEL > 0 and DEBUG_OUTPUT != 'file':
cv2.namedWindow(WINDOW_NAME)
outfiles = []
line_img = cv2.imread(sys.argv[2], 0)
imgfile = sys.argv[1]
img = cv2.imread(imgfile)
small = resize_to_screen(img)
line_img = cv2.resize(line_img, (small.shape[1], small.shape[0]))
basename = os.path.basename(imgfile)