-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmotion_roadmap.py
193 lines (162 loc) · 7.39 KB
/
motion_roadmap.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
#copy from
#https://github.com/chenjm1109/robotics-zhihu/tree/main/src/MotionPlanning/motion_planning
#coding=utf-8
import cv2
import numpy as np
import motion_planning_toolbox as mpt
import math
import os
import time
class MotionRoadmap(object):
def __init__(self, map_img):
## 初始化实例,需要输入一张 bmp 格式的地图
self.map = map_img
# 读取图像尺寸
size = self.map.shape
# 运动规划的起点
self.point_strat = np.mat([0, 0])
# 运动规划的终点
self.point_goal = np.mat([size[0] - 1, size[1] - 1])
def rrt_planning(self, **param):
''' 快速扩展随机树算法(RRT算法)。
本函数可对 self.map 进行 RRT 规划并绘制图像。
Args:
**param: 关键字参数,用以配置规划参数
s: 搜索步长,默认20。int
t: 判断阈值,默认20。float
l: 尝试次数。默认20000。int
p: 绘制图像指令,缺省表示绘制,’None‘表示不绘制。string
Return:
本函数没有返回值,但会根据计算结果赋值(或定义)以下属性变量:
self.rrt_tree: 所生成的rrt树。numpy.mat
数据含义: [[横坐标, 纵坐标, 父节点索引]],其中第一个点为根,最后一个点为终点梢
Raises:
暂无明显的接口错误
Example:
mr = MotionRoadmap(img)
mr.rrt_planning(s=25, t=30, l=15000, p='None')
'''
print('开始 RRT 路径规划,请等待...')
# 关键字参数处理
step_size = 20
threshold = 20 # 距离阈值,小于此值将被视作同一个点,不可大于 step_size
limit_try = 20000
if 's' in param:
step_size = param['s']
if 't' in param:
threshold = param['t']
if 'l' in param:
limit_try = param['l']
if not ('p' in param):
param['p'] = True
# 地图灰度化
image_gray = cv2.cvtColor(self.map, cv2.COLOR_BGR2GRAY)
# 地图二值化
ret,img_binary = cv2.threshold(image_gray, 127, 255, cv2.THRESH_BINARY)
# 初始化 RRT 树:[横坐标,纵坐标,父节点索引]
rrt_tree = np.hstack((self.point_strat, [[0]]))
# 初始化尝试次数
num_try = 0
# 成功标识
path_found = False
while num_try <= limit_try:
## 向随机方向或终点生长
if np.random.rand() < 0.5:
#在地图范围内随机采样一个像素
sample = np.mat(np.random.randint(0, img_binary.shape[0] - 1, (1, 2)))
else:
#或者直接取终点
sample = self.point_goal
## 选择rrt树中离采样点最近的点
# 计算各点与采样点的距离
mat_distance = mpt.straight_distance(rrt_tree[:, 0 : 2], sample)
# 距离最小点的索引
index_close = np.argmin(mat_distance, 0)[0, 0] #末尾索引用以取数值,否则为矩阵
point_close = rrt_tree[index_close, 0 : 2]
## 从距离最小点向采样点移动 step_size 距离,并进行碰撞检测
theta_dir = math.atan2(sample[0, 0] - point_close[0, 0], sample[0, 1] - point_close[0, 1])
point_new = point_close + step_size * np.mat([math.sin(theta_dir), math.cos(theta_dir)])
# 将坐标化为整数
point_new = np.around(point_new).astype(np.int32)
#检测碰撞
if not mpt.check_path(point_close, point_new, img_binary):
num_try = num_try + 1
continue
## 距离终点小于阈值距离,则规划成功
if mpt.straight_distance(point_new, self.point_goal) < threshold*1.5:
path_found = True
# 加入到rrt树
point_new = np.hstack((point_new, [[index_close]]))
rrt_tree = np.vstack((rrt_tree, point_new))
break
## 计算rrt树中各点与新点的距离,如果均大于 threshold 的,则添加新点到rrt树
#保证新点和树上已有的点不重合
mat_distance = mpt.straight_distance(rrt_tree[:, 0 : 2], point_new)
if np.min(mat_distance, 0) < threshold:
num_try = num_try + 1
continue
#不重合,则把新点加入树中
point_new = np.hstack((point_new, [[index_close]]))
rrt_tree = np.vstack((rrt_tree, point_new))
self.plot(self.map, rrt_tree)
if path_found == True:
print('规划成功!')
self.rrt_tree = rrt_tree
else:
print('没有找到解。')
self.rrt_tree = rrt_tree
## 根据关键字确定是否绘图
if not(param['p'] == 'None'):
if (path_found == True):
self.rrt_tree
mpt.tree_plot(self.map, self.rrt_tree)
else:
print('没有找到解,无法绘图。')
def plot(self,map_img, rrt_tree):
## 绘制树形图
# 画点
point_size = 2
point_color = (0, 127, 0) # BGR
thickness = 1
# 将矩阵转化为数组并转为整型,再转化为元组,以供cv2使用
vertex = np.around(np.array(rrt_tree)).astype(int)
vertex_tuple = tuple(map(tuple, vertex))
# 画点画线
for point in vertex_tuple:
cv2.circle(map_img, point[0 : 2], point_size, point_color, thickness)
if point[0] != 0:
cv2.line(map_img, point[0 : 2], vertex_tuple[point[2]][0 : 2], (255,150,150), 1)
cv2.imshow("123",cv2.resize(cv2.flip(map_img,0),(800,800),cv2.INTER_NEAREST))
cv2.waitKey(1)
def get_path(self):
path_index=[]
point_a_index = -1
path_index.append(point_a_index)
vertex = np.around(np.array(self.rrt_tree)).astype(int)
while point_a_index != 0:
point_b_index = int(self.rrt_tree[point_a_index, 2])
# cv2.line(map_img,vertex_tuple[int(point_a_index)][0 : 2], vertex_tuple[int(point_b_index)][0 : 2],(0,0,255),4)
point_a_index = point_b_index
path_index.append(point_a_index)
path_index=np.array(path_index)
path_index=np.flip(path_index,0)
path_nodes=vertex[path_index]
path_points=[[point[0],point[1]] for point in path_nodes]
end_point=[self.point_goal[0,0],self.point_goal[0,1]]
path_points.append(end_point)
return path_points
if __name__=="__main__":
## 预处理
# 图像路径
image_path = os.path.dirname(__file__)+"\\sourceMap\\map_3.bmp"
# 读取图像
# img = cv2.imread(image_path)# np.ndarray BGR uint8
img = cv2.imdecode(np.fromfile(image_path, dtype=np.uint8), -1)
# imdecode读取的是rgb,如果后续需要opencv处理的话,需要转换成bgr,转换后图片颜色会变化
img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
img = cv2.resize(img,(500,500))
mr = MotionRoadmap(img)
#mr.rrt_planning(s=20, t=20, l=15000)
#mr.point_strat = np.mat([0,99])
#mr.point_goal = np.mat([95,5])
mr.rrt_planning()