-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathoracle_chat_with_memory.py
285 lines (215 loc) · 7.1 KB
/
oracle_chat_with_memory.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
"""
File name: oracle_chat_with_memory.py
Author: Luigi Saetta
Date created: 2023-12-04
Date last modified: 2024-04-28
Python Version: 3.11
Description:
This module provides the UI for the RAG demo
Usage:
streamlit run oracle_chat_with_memory.py
License:
This code is released under the MIT License.
Notes:
This is part of a series of demo developed using OCI GenAI and LangChain
Warnings:
This module is in development, may change in future versions.
"""
import os
import time
import tempfile
import streamlit as st
from langchain_core.messages import HumanMessage, AIMessage
from factory import build_rag_chain, get_embed_model
from chunk_index_utils import (
load_book_and_split,
add_docs_to_faiss,
add_docs_to_opensearch,
add_docs_to_23ai,
)
from utils import get_console_logger, enable_tracing, remove_path_from_ref
#
# Configs
#
from config import (
VERBOSE,
HELLO_MSG,
ENABLE_TRACING,
FAISS_DIR,
BOOKS_DIR,
TITLE,
ADD_REFERENCES,
DO_STREAMING,
VECTOR_STORE_TYPE,
EMBED_MODEL_TYPE,
)
# Constant
USER = "user"
ASSISTANT = "assistant"
# when push the button reset the chat_history
def reset_conversation():
"""
when push the button reset the chat_history
"""
# chat_history is per session
st.session_state.chat_history = []
st.session_state.request_count = 0
# defined here to avoid import of streamlit in other module
# cause we need here to use @cache
@st.cache_resource
def create_chat_engine(verbose=VERBOSE):
"""
Create the entire RAG chain
"""
return build_rag_chain(FAISS_DIR, BOOKS_DIR, verbose=verbose)
def format_references(v_docs):
"""
format the references to add at the end of response
"""
references = "\n\nReferences:\n\n"
for doc in v_docs:
ref_name = remove_path_from_ref(doc.metadata["source"])
references += f"- {ref_name}, pag: {doc.metadata['page']}\n"
return references
# case no streaming: to format output with references
def nostream_output(v_ai_msg):
"""
format the output when not using streaming
"""
formatted_output = v_ai_msg["answer"]
if ADD_REFERENCES and v_ai_msg["context"]:
formatted_output += format_references(v_ai_msg["context"])
st.markdown(formatted_output)
return formatted_output
# case streaming
def stream_output(v_ai_msg):
"""
format the output when using streaming
"""
text_placeholder = st.empty()
formatted_output = ""
for chunk in v_ai_msg:
if "answer" in chunk:
formatted_output += chunk["answer"]
text_placeholder.markdown(formatted_output, unsafe_allow_html=True)
if ADD_REFERENCES:
if "context" in chunk:
refs = format_references(chunk["context"])
# references must be added at the end
# in Langchain they're passed before the answer in the stream
if ADD_REFERENCES:
formatted_output += refs
text_placeholder.markdown(formatted_output, unsafe_allow_html=True)
return formatted_output
def display_msg_on_rerun(chat_hist):
"""
display all the msgs on rerun
"""
for msg in chat_hist:
# transform a msg in a dict
if isinstance(msg, HumanMessage):
the_role = USER
else:
the_role = ASSISTANT
message = {"role": the_role, "content": msg.content}
with st.chat_message(message["role"]):
st.markdown(message["content"])
def write_temporary_file(v_tmp_dir_name, v_uploaded_file):
"""
Write the uploaded file as a temporary file
"""
temp_file_path = os.path.join(v_tmp_dir_name, v_uploaded_file.name)
with open(temp_file_path, "wb") as f:
f.write(v_uploaded_file.getbuffer())
return temp_file_path
def load_uploaded_file_in_vector_store(v_uploaded_file):
"""
load the uploaded file in the Vector Store and index
"""
# write a temporary file with the content
with tempfile.TemporaryDirectory() as tmp_dir_name:
temp_file_path = write_temporary_file(tmp_dir_name, v_uploaded_file)
# prepare for loading
docs = load_book_and_split(temp_file_path)
embed_model = get_embed_model(EMBED_MODEL_TYPE)
if VECTOR_STORE_TYPE == "FAISS":
add_docs_to_faiss(docs, FAISS_DIR, embed_model)
elif VECTOR_STORE_TYPE == "OPENSEARCH":
add_docs_to_opensearch(docs, embed_model)
elif VECTOR_STORE_TYPE == "23AI":
add_docs_to_23ai(docs, embed_model)
#
# Main
#
# Configure logging
# I have changed the way I config logger to solve some problems with
# PY 3.11
logger = get_console_logger()
if ENABLE_TRACING:
# enable tracing with LangSmith
enable_tracing()
# the title (from config)
st.title(TITLE)
# Added reset button
if st.sidebar.button("Clear Chat History"):
reset_conversation()
# to load other pdf
uploaded_file = st.sidebar.file_uploader(
label="Upload files", type=["pdf"], accept_multiple_files=False
)
if uploaded_file:
logger.info("Loading %s in the Vector Store...", uploaded_file.name)
load_uploaded_file_in_vector_store(uploaded_file)
logger.info("Loaded !")
# reload the rag_chain (do we need?)
rag_chain = build_rag_chain(FAISS_DIR, BOOKS_DIR, verbose=False)
uploaded_file = None
# Initialize chat history
if "chat_history" not in st.session_state:
reset_conversation()
# init RAG
with st.spinner("Initializing RAG chain..."):
# here we create the query engine
rag_chain = create_chat_engine(verbose=VERBOSE)
# Display chat messages from history on app rerun
display_msg_on_rerun(st.session_state.chat_history)
#
# Here the code where react to user input
#
if question := st.chat_input(HELLO_MSG):
# Display user message in chat message container
st.chat_message(USER).markdown(question)
# Add user message to chat history
st.session_state.chat_history.append(HumanMessage(content=question))
# here we call the RAG chain...
try:
with st.spinner("Calling AI..."):
time_start = time.time()
st.session_state.request_count += 1
logger.info("")
logger.info("Question n. %s", st.session_state.request_count)
#
# Here we invoke the GenAI service
#
# prepare the input adding chat_history
input_msg = {
"input": question,
"chat_history": st.session_state.chat_history,
}
if DO_STREAMING:
ai_msg = rag_chain.stream(input_msg)
else:
ai_msg = rag_chain.invoke(input_msg)
# Display the response in chat message container
with st.chat_message(ASSISTANT):
if DO_STREAMING:
output = stream_output(ai_msg)
else:
output = nostream_output(ai_msg)
# Add assistant response to chat history
st.session_state.chat_history.append(AIMessage(content=output))
logger.info("Elapsed time: %s sec.", round((time.time() - time_start), 1))
except Exception as e:
ERR_MSG = "An error occurred: " + str(e)
logger.error(ERR_MSG)
st.error(ERR_MSG)