-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathm8.tex
59 lines (56 loc) · 2.12 KB
/
m8.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
\documentclass{article}
\usepackage{amsmath}
\usepackage{amssymb}
\title{MATH 4338 Main Problem 8}
\date{}
\author{Andy Lu}
\usepackage[utf8]{inputenc}
\usepackage[english]{babel}
\usepackage{amsthm}
\newtheorem{theorem*}{Question}
\begin{document}
\maketitle
\begin{proof}
Verify
$$g'(x_0) = \frac{1}{f'[g(x_0)]}$$
Computing $f'(x)$:
\begin{align*}
\indent \text{Note: Computing }a'(x) \text{ and } b'(x): & & \\
a'(x) = 3x^{3-1} = 3x^2 & & \text{[by Theorem 4.7]} \\
b'(x) = 1x^{1-1} + 0 = 1 & & \text{[by Theorem 4.3, 4.7, and 4.1]} \\
%f(x) = (x-1)^3 \, , \, I = {x:1<x<\infty} & & \\
\end{align*}
\begin{align*}
f'(x) = a'(b(x)) \cdot b'(x) & & \text{[by the chain rule and}\\
& & \text{ where } a(x) = x^3 \text{ and } b(x) = x-1 ]\\
= (3(x-1)^2)(1) & & \text{[substituting in } a'(x) \,, b(x)\,, b'(x)] \\
= 3(x-1)^2 & & \\
\end{align*}
Computing $g'(x)$:
\begin{align*}
x =& (y-1)^3 \\
\sqrt[3]{x}=&(y-1) \\
\sqrt[3]{x} + 1 =& y \\
\sqrt[3]{x} + 1 =& g(x) \\
\end{align*}
Let $c(x) = \sqrt[3]{x}$ and $d(x) = 1$. Then by Theorem 4.9,4.7, and 4.1,
$c'(x) = 3^{-1}(x)^{3^{-1} - 1}(1) = \frac{x^{-2/3}}{3} =
\frac{1}{3x^{2/3}}$. Also by Theorem 4.1, $d'(x) = 0$. Thus,
\begin{align*}
g'(x) = c'(x) + d'(x) && \text{[by Theorem 4.3]} \\
g'(x) = \frac{1}{3x^{2/3}} + 0 && \text{[by substitution]} \\
g'(x) = \frac{1}{3x^{2/3}} && \\
\end{align*}
Now we verify this is Formula 4.13 of the Inverse Differentiation Theorem.
\begin{align*}
\frac{1}{f'[g(x_0)]} &= &&\\
&= \frac{1}{3(g(x_0)-1)^2} && \text{[by substitution]}\\
&= \frac{1}{3(\sqrt[3]{x_0} + 1-1)^2} && \text{[by substitution]}\\
&= \frac{1}{3(\sqrt[3]{x_0})^2} && \text{[combine like terms]}\\
&= \frac{1}{3((x_0)^{1/3})^2} && \text{[square root property]}\\
&= \frac{1}{3(x_0)^{2/3}} && \text{[exponent property]}\\
&= g(x_0) && \text{[definition of } g'(x) ]
\end{align*}
Thus, Formula 4.13 of the Inverse Differentiation Theorem is verified.
\end{proof}
\end{document}