-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathm4.tex
78 lines (72 loc) · 3.03 KB
/
m4.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
\documentclass{article}
\usepackage{amsmath}
\usepackage{amssymb}
\title{MATH 4338 Main Problem 4}
\date{}
\author{Andy Lu}
\usepackage[utf8]{inputenc}
\usepackage[english]{babel}
\usepackage{amsthm}
\newtheorem{theorem*}{Question}
\begin{document}
\maketitle
\begin{theorem*} 2.3 \#2
\newline
Given,
$$f(x)
\begin{cases}
\frac{x^2-1}{x^4-1} & 1 < x < 2 \\
x^2 +3x - 2 & 2 \leq x < 5
\end{cases}
$$
\begin{itemize}
\item Show whether $f$ is continuous on the left at 2 using the method from the book.
\item Show whether $f$ is continuous on the right at 2 using the $\epsilon\text{-}\,\delta$ definition of continuity.
\end{itemize}
\end{theorem*}
\begin{proof}
Continuity on the left:
Start by multiplying the given $f(x)$ by $1$, in the form of $\frac{x^{-4}}{x^{-4}}$:
\begin{equation*}
(\frac{x^2-1}{x^4-1})(\frac{x^{-4}}{x^{-4}}) = \frac{x^{-2} - x^{-4}}{1 - x^{-4}}
\end{equation*}
We can compute the limit of this function with the limit rules:
\begin{align*}
\lim_{x \rightarrow 2^-}\frac{x^{-2} - x^{-4}}{1 - x^{-4}} & &\\
&= \frac{\lim_{x \rightarrow 2^-}(x^{-2} - x^{-4})}{\lim_{x \rightarrow 2^-}(1 - x^{-4})} & [\text{Thm 2.8}] \\
&= \frac{\lim_{x \rightarrow 2^-}(x^{-2}) - \lim_{x \rightarrow 2^-}(x^{-4})}
{\lim_{x \rightarrow 2^-}(1) - \lim_{x \rightarrow 2^-}(x^{-4})} & [\text{Thm 2.5}] \\
&= \frac{\frac{1}{2^2} - \frac{1}{2^4}}{(1) - (2^{-4})} & [\lim_{x \rightarrow 2^-}(1) = 1\text{ by Thm 2.2}] \\
&= \frac{\frac{1}{4} - \frac{1}{16}}{\frac{16}{16} - \frac{1}{16}} = \frac{3/16}{15/16} = \frac{3}{15} = \frac{1}{5} & [\text{by algebra}] \\
& &
\end{align*}
As $2$ is in the domain of $f$, we can evaluate our function at $x=2$:
\begin{equation*}
f(2) = \frac{(2)^2-1}{(2)^4-1} = \frac{3}{15} = \frac{1}{5}
\end{equation*}
By the definition of continuous on the left, $f(x)$ ijs continuous on the left at $2$.
\end{proof}
\begin{proof}
Continuity on the right:
Let $\epsilon > 0$. Pick $\,\delta = \frac{-7 + \sqrt{49 +4\epsilon}}{2}$. \\
Note:
\begin{align*}
\delta(\delta + 7) &= \epsilon \\
\delta^2 + 7\delta - \epsilon &= 0\\
\delta &= \frac{-7 \pm \sqrt{49 +4\epsilon}}{2} \\
\end{align*}
Since $\delta > 0$, we ignore $\frac{-7 - \sqrt{49 +4\epsilon}}{2}$. As $\epsilon > 0$, then
$49 +4\epsilon > 49 > 0$. Taking the square root of all terms, $\sqrt{49 +4\epsilon} > 7$.
Thus, $\,\delta > 0$ and $\delta \in \mathbb{R}$. Let $x \in [2,5)$. Suppose
$0 \leq x-2 < \,\delta$. Then,
\begin{align*}
|f(x) - f(2)| &\\
&=|(x^2 +3x - 2) - (2^2 + 3(2) - 2)|\\
&=|x^2 + 3x - 2 -8|\\
&=|(x+5)(x-2)| \\
&=|x+5||x-2| \\
&=|x-2 + 7||x-2| <\,\delta(\,\delta + 7) = \epsilon
\end{align*}
Thus, by defintion, $\lim_{x \rightarrow 2+}f(x) = 2$, so $f(x)$ is continuous on the right at $2$.
\end{proof}
\end{document}