-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathm2.tex
109 lines (100 loc) · 5.13 KB
/
m2.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
\documentclass{article}
\usepackage{amsmath}
\usepackage{amssymb}
\title{MATH 4338 Main Problem 2}
\date{}
\author{Andy Lu}
\usepackage[utf8]{inputenc}
\usepackage[english]{babel}
\usepackage{amsthm}
\newtheorem{theorem*}{Question}
\begin{document}
\maketitle
\begin{theorem*} 1.2 \#10
\newline
\begin{itemize}
\item Define the operations of addition and multiplication for the set $\mathbb{Q}[\sqrt{5}]$
\item State the additive and multiplicative identities (no proof needed)
\item For any element $a + b\sqrt{5} \in \mathbb{Q}$ that is not the additive identity, show
what its muliplicative inverse is and prove that it is unique
\end{itemize}
\end{theorem*}
\begin{proof}
Let $a+b\sqrt{5}$, $c+d\sqrt{5} \in \mathbb{Q}[\sqrt{5}]$. Then we define the following: \\
\begin{description}
\item[Addition] Let $e+f\sqrt{5} \in \mathbb{Q}[\sqrt{5}]$, where
\begin{align*}
e+f\sqrt{5} & = (a+b\sqrt{5}) + (c+d\sqrt{5}) \\
& = (a+c) + (b+d)\sqrt{5}\\
\end{align*}
So $ e = a+c$ and $f = b+d$.
\item[Multiplication] Let $g+h\sqrt{5} \in \mathbb{Q}[\sqrt{5}]$, where
\begin{align*}
g+h\sqrt{5} & = (a+b\sqrt{5}) \cdot (c+d\sqrt{5}) \\
& = (a)(c+d\sqrt{5}) + (b\sqrt{5})(c+d\sqrt{5})\\
& = (a)(c) + (a)(d\sqrt{5}) + (c)(b\sqrt{5})
+ ((d\sqrt{5}))((b\sqrt{5})) \\
& = (a)(c) + (5)(b)(d) + (a)(d)(\sqrt{5}) + (c)(b)(\sqrt{5}) \\
& = [(a)(c) + (5)(b)(d)] + [(a)(d) + (b)(c)]\sqrt{5}
\end{align*}
So $g = a \cdot c + 5 \cdot b \cdot d$ and $h = a \cdot d + b \cdot c$.
\item[Additive Identity]: $0 + 0\sqrt{5}$ where $ 0 \in \mathbb{Q}$.
\item[Multiplicative Identity]: $1 + 0\sqrt{5}$ where $ 1,0 \in \mathbb{Q}$.
\break
\item[Multiplicative Inverse]: Let $x \in \mathbb{Q}[\sqrt{5}]$ and suppose
$x = a+b\sqrt{5}$ \\
and $y = c+d\sqrt{5}$, where $a,b \neq 0$. Pick
\begin{align*}
c = \frac{-a}{-a^2+5b^2} & & d = \frac{b}{-a^2+5b^2}
\end{align*}
Since $x \in \mathbb{Q}[\sqrt{5}]$, then $a,b \in \mathbb{Q}$. Suppose
$a=\frac{p}{q}$ and $b=\frac{r}{s}$
Note that $p,q,r,s \in \mathbb{Z}$, by definition of $\mathbb{Q}$. \\
The denominator of $c$ and $d$ then, by arithmetic, is:
\begin{align*}
(-a^2 + 5b^2) & = (\frac{-p}{q} + \frac{5 \cdot r \cdot r}{s \cdot s}) \\
& = \frac{-p \cdot q \cdot s \cdot s + 5 \cdot r \cdot r
\cdot q}{q \cdot s \cdot s} \\
\end{align*}
Because $a,b \in \mathbb{Q}$, $q$ and $s$ cannot be equal to zero. Then, the product
$q \cdot s \cdot s$ is the product of three non-zero integers. Similarly in the
numerator, because $a,b \neq 0$, then $p, r \neq 0$. Thus the numerator is a sum of
two integer products. Then $\exists u,v \in \mathbb{Z}$ such that
\begin{align*}
(-a^2 + 5b^2) & = \frac{-p \cdot q \cdot s \cdot s + 5 \cdot r \cdot r
\cdot q}{q \cdot s \cdot s} \\
& = \frac{u}{v}
\end{align*}
Thus, by the definition of $\mathbb{Q}$, $c,d \in \mathbb{Q}$. Furthermore, by
definition of $\mathbb{Q}[\sqrt{5}]$, $y \in \mathbb{Q}[\sqrt{5}]$. Using the
definition of multiplication for two elements of $\mathbb{Q}[\sqrt{5}]$,
\begin{align*}
(x \cdot y) &= (a+b\sqrt{5})(c+d\sqrt{5}) \\
&= (a)(c) + (a)(d\sqrt{5}) + (c)(b\sqrt{5}) + (b\sqrt{5})(d\sqrt{5})
\end{align*}
Note:
\begin{align*}
(a)(d\sqrt{5}) &= (a)(\frac{b}{-a^2+5b^2}) \\
&= \frac{ab}{-a^2+5b^2} \\
(c)(b\sqrt{5}) &= (\frac{-a}{-a^2+5b^2})(b\sqrt{5}) \\
&= \frac{-ab}{-a^2+5b^2} \\
\end{align*}
Thus $(a)(d\sqrt{5}) + (c)(b\sqrt{5}) = 0$. \\
Continuing $(x \cdot y)$:
\begin{align*}
(x \cdot y) &= (a)(c) + (a)(d\sqrt{5}) + (c)(b\sqrt{5}) + (b\sqrt{5})(d\sqrt{5})\\
&= (a)(c) + (0) + (b\sqrt{5})(d\sqrt{5})\\
&= (a)(c) + (b\sqrt{5})(d\sqrt{5})\\
&= (a)(c) + (b)(d)(\sqrt{5} \cdot \sqrt{5})\\
&= (a)(c) + (5)(b)(d) \\
&= (a)(\frac{-a}{-a^2+5b^2}) + (5b)(\frac{b}{-a^2+5b^2}) \\
&= (\frac{-a^2}{-a^2+5b^2}) + ((\frac{5b^2}{-a^2+5b^2}))\\
&= (\frac{-a^2+5b^2}{-a^2+5b^2}) \\
&= 1
\end{align*}
Thus, the multiplicative inverse $y$ exists. Suppose $z \in \mathbb{Q}[\sqrt{5}]$
and $x \cdot z = 1$. Then $x \cdot y = 1 = x \cdot y$. Therefore $ y = z$. Thus, $y$
is unique.
\end{description}
\end{proof}
\end{document}