-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathch4-CFopa_Rf_vs_BW.nb
899 lines (889 loc) · 43.9 KB
/
ch4-CFopa_Rf_vs_BW.nb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 11.2' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 158, 7]
NotebookDataLength[ 44761, 889]
NotebookOptionsPosition[ 44223, 871]
NotebookOutlinePosition[ 44582, 887]
CellTagsIndexPosition[ 44539, 884]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{
RowBox[{"Z0", "=."}], ";",
RowBox[{"\[Omega]0", "=."}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"A", "[",
RowBox[{"s_", ",", "Rf_"}], "]"}], ":=",
FractionBox[
FractionBox["Z0",
RowBox[{"1", "+",
RowBox[{"s", "/", "\[Omega]0"}]}]],
RowBox[{"Rf", "+",
FractionBox["Z0",
RowBox[{"1", "+",
RowBox[{"s", "/", "\[Omega]0"}]}]]}]]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"db", "[", "a_", "]"}], ":=",
RowBox[{"20", "*",
RowBox[{"Log10", "[",
RowBox[{"Abs", "[", "a", "]"}], "]"}]}]}],
";"}], "\[IndentingNewLine]",
RowBox[{"FullSimplify", "[",
RowBox[{"A", "[",
RowBox[{"s", ",", "Rf"}], "]"}], "]"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"Z0", "=", "40000"}], ";",
RowBox[{"\[Omega]0", "=",
RowBox[{"5000000", " ", "2", "\[Pi]"}]}], ";"}], "\[IndentingNewLine]",
RowBox[{"LogLinearPlot", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"db", "[",
RowBox[{"A", "[",
RowBox[{
RowBox[{"\[ImaginaryI]", " ", "2", "\[Pi]", " ", "f", " ",
SuperscriptBox["10", "6"]}], ",", "250"}], "]"}], "]"}], ",",
RowBox[{"db", "[",
RowBox[{"A", "[",
RowBox[{
RowBox[{"\[ImaginaryI]", " ", "2", "\[Pi]", " ", "f", " ",
SuperscriptBox["10", "6"]}], ",", "500"}], "]"}], "]"}], ",",
RowBox[{"db", "[",
RowBox[{"A", "[",
RowBox[{
RowBox[{"\[ImaginaryI]", " ", "2", "\[Pi]", " ", "f", " ",
SuperscriptBox["10", "6"]}], ",", "1000"}], "]"}], "]"}]}], "}"}],
",",
RowBox[{"{",
RowBox[{"f", ",", "10", ",", "10000"}], "}"}], ",",
RowBox[{"PlotTheme", "\[Rule]", "\"\<Monochrome\>\""}], ",",
RowBox[{"GridLines", "\[Rule]", "Automatic"}], ",",
RowBox[{"PlotLegends", "\[Rule]", "\"\<Expressions\>\""}]}],
"]"}], "\[IndentingNewLine]"}], "Input",
CellChangeTimes->{{3.7504274067586317`*^9, 3.750427455672123*^9}, {
3.750427496176982*^9, 3.7504277240803137`*^9}, {3.750427784485793*^9,
3.7504277907324057`*^9}, {3.750431336411273*^9, 3.750431417749895*^9}, {
3.750431447882921*^9, 3.750431528394183*^9}, {3.7504316756595182`*^9,
3.750431693443284*^9}, {3.750433378209133*^9,
3.750433386954081*^9}},ExpressionUUID->"996b2263-53d6-4fb9-b952-\
6bf0b29af9cf"],
Cell[BoxData[
FractionBox[
RowBox[{"Z0", " ", "\[Omega]0"}],
RowBox[{
RowBox[{"Z0", " ", "\[Omega]0"}], "+",
RowBox[{"Rf", " ",
RowBox[{"(",
RowBox[{"s", "+", "\[Omega]0"}], ")"}]}]}]]], "Output",
CellChangeTimes->{{3.750427658111781*^9, 3.750427724412365*^9}, {
3.750427784879159*^9, 3.750427791284754*^9}, 3.7504313389761333`*^9, {
3.750431372449177*^9, 3.750431406595257*^9}, {3.750431509573329*^9,
3.750431528978643*^9}, {3.750431685525756*^9, 3.750431693660101*^9}, {
3.7504333791291533`*^9,
3.750433387312998*^9}},ExpressionUUID->"f72d5ae3-1a59-4f24-bfd6-\
0d690d855f33"],
Cell[BoxData[
TemplateBox[{GraphicsBox[{{{{}, {},
TagBox[{
Directive[
Opacity[1.],
GrayLevel[0],
CapForm["Butt"],
AbsoluteThickness[1.6],
AbsoluteDashing[{}]],
LineBox[CompressedData["
1:eJwVVnk0FIwXtWc3O0PIhESFsqXkJZK+ihShLEWFaFGE5LOltFgq+0dKSpmx
jLFVehOyZ99KSCKRqCQkfn5/vXPPO++8e99yzlU6dsb6OB8PD48/Lw/P/2PF
hvtNBaf4wGdVmPI6CSYShFVjhM/ygclHjbQby9hp8Kml8wU+SONJvjy+jOfu
cFrEL/PBsXchF5mSTNSaq2k7Gc0HBn7zhzcRmJhW+a1LvoAPQnTr99iQmehv
t3UgaoYP6mOqiBN0JlZrv7r3YZ4P7nYMnnCQZSJFbKeL/hIfrD7VtrF2GeeV
Ww5+WsEPOnc3amfJMXGE4TpkTOeHiC6tLjd5Jh6ciPr8aws/HLsjovtnFRM1
w7onj4byg0u4M/81NSa+vxStQIvkBz5eq2qptUy87mu2t/46P4TFbl2btIxH
3AufbrzLD/WlC61P1Zn4n2XMcf7H/OBUP1HZvY6JwvLmvQ8b+YF9VKHdSpuJ
H0qKqz9LC4A2oVv2tSETowu8f6WuFACzc32Hj21h4pYcZWUrJQH4tGajLc9W
Jiak3w4tVReAx81agduMmLjnyumtUUYCMLUjM7HSmIml1qpsdVcBOOP87Ot3
UybGTcSneecKgObjr/bDlkwUGC9damULgIC/4skYKyb6jfYe1SsRAJ6HbpqG
+5l4ZEhJdQkF4MCw43ScNRNV37JyY1sFICCu6sRuGya+qHqNhdMC4BQv+2jA
gYmjqb8G5wwFQVhS7cr9E0w8nCxj6mQsCCM9E3fdTjKxKWHLo4odgrBC0/yS
mjsTC+NCPW/sEYR55+PNbA8mBl+V+LnSSRDyhZ3zWr2W93VeRQBCBUHx9GrG
5vNMNN5toxpZIwjn1no/KQphIo+NamBHgyDkySjyx4Uykev8+w2jRRDuhx62
8A5joolvsi/2CEJq7dl7ahFM3JnRVzX7RRDCs3Win15dntfMcddT4kJwlvvD
4X00E+0e+GVY7ReC8wVPSUtpTKSzzKfTbYRAUFaFdz6die9KZHZN2AsBvUFn
8de9ZX1vnk1GHROC1v5Mte/3l+93dnFb5XkhmM6ZdprOYqLbvqt9uglCkNQv
c0gzl4nn5hNl5XqFgFt/ceRfZOJtldT31QNCENUwfaiEy0S2VXq6zychuL61
TnfqFROnHz1k1E8IwYUghtGJquX9HChQD+BZAYsiT5+41jExkFlv2K2yAjbU
qgdktTMxwumvw52zK6BB/JPN/i9MfBjFI2/suwIOpeewy8aY+JrDPzAWsALS
ef5yVn9lopCYqKtJ+Arwqv1RsPCNiVEltFPf41fA0857lRXTy/dH0Lpk+XwF
dJzT4r3Pw8KkimOpYkLC8DjhvCGHzsLg762xJ0WFIaT95d7Ncix0W7U9slJS
GB5N5YtwV7JQM1jx3CVpYRAPqw1rU2Rh9eb3O8fVhIH36xhTTJWFv/JtftT/
Iwy7br0KadnIQut7uyyuxwmDQRl/XMFeFho0lWwbiReGd4ELR89YslDhr6qO
SYowfIsKpmvuZ+EXB0HF+QfCkKVzypRzkIUhtIppD44wKM5druo8zMLcW1sy
LLqFYcThjcVFTxaKBW34LSwvAlsjxWt2RLHQqqHZoUJJBD5x+f29b7AwQfbc
y0uqIjA2O1iSfIuFjLLCK980RWDlm9NTc3HLfGYMKB0mIrDxnXXK25RlvWd3
aN9zF4HogIAoGRYLX7rZndLliMCNpMOHc9pZKMCZa/pWKgLXtbaKr+9ioQV/
6sbschHIkOThFPSwsON+35xsjQjEbzWYqexj4Xj/sWs870SArBCaLT7KQhl7
76yGJRHQiPszpv2XhT57wwaO/iMKws2GS8Nrc1HoaauOoJUoPMrIJnDX5WKK
kNL17IOiQFaLP5emmYuvEHUmHUVhdZKF9jHdXCRs/BsVdFYU7Fo4FMr2XGTR
/HUS40Uhkk0ZWGmfi6MD3lGNA6IwcuYgaeBGLgZtLe8/80kUrJqvvFePWa5P
FtchfxGFnCaJwMDbuahvndNv/0MU1GOGQCU5FyOrRjd9FhCDN73kS08e5eLq
J679vOpicDqOnn62IhedfOw36V8Qg+sk2zTZv7lY0kZ5cd1fDGTP7mFk8+Qh
YVOLaX+QGEhQkv7dLJCHFT932l65IgYvr7S1nxTLQxVfnYD2BDEYkzK3+0nP
w68XpfBMmRgc7Cu7Uaefh4GXX+/OXlzutyP9RJxfHrb3hbT/4ROHB2b/HXkQ
mIfrtm09YrlCHHaH/ygtCc7D/kW294yUOHSdzCuZjMzD7SEZsaZK4uATwz0Q
n5iHwuGXuj7sEIdVF/l3Py/Lw4Rr2sfoUeJgUd/JrufJR0sRRfv6W+JgJ1z1
0oo/H4Wvi1tdui0OOmKPuW8F8zHgxmejvlRxEA9Yz5kWzccj0Wn0+7nioMC7
78U+aj4q3RVpVesQh9nWn6cT1POReW/Q2EBRAtpnBddHH8rH46ua9b6slgAb
HzJPoEM+Ktx/sT5FTQLydDaDh2M+xjxIlFvQlgCe2l5pa9d89Mna+xtNJaBF
53P83jP5qJ9TlmvuKQHuDwXdJ6/mY0VxnPyhIglg0Jq3LjzPR9gybl5aJgHD
6iXaypiPL9HUh/5SAsJjO1IsK/LxWe3v6t5qCTAaqOnJr83HgneOZ116JGD3
c8bptM58zFhcW+nxRwKmzUZcGFP5GLyzwj1ouyScfiBi/3tNAS7Uy93pM5ME
kbN7L8RrFGCgpW/5tt2SEOmWH6GvWYB+dmok3gOSsPPwyoSregXo7Rn9/Iqb
JJT2xvw6ZFawPC8HyZirksCWyIgsdy1Aw64fhfffSML6R+2TzzMLUMh9vvlr
qyQ4ufsHNT4uwLY53q/6XZJwvz3EbTCnAD3licpN/ZJgeNPZXoZTgClumnfn
JyVh28V+++dVBTj349SFAyQpOFXK/Ph2pABLpYZ1BA9JwWyF7bXUDWyMuP/V
yuqwFPiXhI3CJjZabZr2SnWWAueROZNxfTaO2vJnabtLQZCK1MK+7WyUSVei
OgVIweOaX5QDB9l4cZ3Tr+JUKbAau5xlfYmNehbdRe4fpCAit/WO7Rs2HvtD
AOKwFKT8aKmjt7MxmrW7vuyLFAjaiLGHetg4THzZL/pTCpimeqU3PrFxt3db
eBcfAXi0Av3WL7BxTreM6U8lwD81xIKX6wrxUE3k4gtDAmyI1Czbf6cQvTIy
dxCNCOByYvvYfHIhhgVwrx03JkDIFY/unIxCzNWYJ0maEqBorFJEJbcQhWK9
1zjvJYD3nQMNvnWFWGR30IrXhQCpO+Lqkng5SB5TemB2hQAntq9TWuPPQfHX
0zw+VwnQflKizuZfDgpk1DinRy3z8zLQvxnJwWkbb/nftwhgyhq7SojnYNer
0qTsBAL07FL/fJHNwZRkyxixbAL8NiIr1H3jIMPiclBrPQHkjE2PFHoXoayy
Ve/fRgK8vdhSOO5bhOQlhqF6MwHcnM0m1wUXoUBR7e+wdgK0aagY1EcX4cgq
ynmd9wS4NJykeC6/CJ/OPvVInCCAQdxUp/+vItTO7rF1JBDh3Peh6OLIYnS4
U+VVSiJCx1KLzZfYYgwLzg8jU4mgKTItqZZajG0Hr+XW0Ynw4vn5mLq8YrzA
ayCkt5oI32gL+9PfFmOJQ2KRpB4RXG33HkrVLEEjCVsK9zAR1l07lbp7uARP
zG5Xl3MiQvVeaJT+XoLRQ+vBz4UIGnrZDT8WSrC/TNBr3XEiCGfu8mujlGLI
iaLKpNNEiFE9bWxoVoqVyw7oXCgRFIM38D/LLkULn/ZWxmMieE2+2Pk9sAxl
3BI++DwhgnZOa7bdtTIctbGfrMghwkMPVc/m+DKM3Dwg7ppPhKSGk1bj+WVY
xTNunllGhLGJc0n9n8sQYvherm4kwj8NEdwKu2eox9R+qvydCPNUzic+8+co
lD5deuEnEVolbgUF2D7HzpiSmqpfROC7/qmW98RzvHDeaNhtngjJN7c2m195
jgWGFquy+EnwXiu7NqfqOa6rc0lQoZEgIaLLfXjnC1w9EhOmuoUEQ09ejBXa
l2PnW+GcfUYkEDhbY2LjWY5X34S2+xmTIHk674DwpXIc55xXrtlBgrvDWWOZ
/5VjYfih6pN7SFBnx/jD/lCOO5QURZ84kqD78y2b7V4v0fVIbpxGCAnqo4Z9
s+MQqVZrnh0II8F3goLfo4eINTsyPl6KIAFhRv1JaQmihsbtTY3XSNBj7bxA
70f8Oefb6RVHgr4WGdsvVC6GJxrRcx+QwCDnYGzicS5mtjVmaL0mwZXfr7Rl
JF5hRJdTyNUaEoyu/kewV+YVnng35dxft6zn89ljOcqvUP0jRfFmEwnyE5pm
Lmx9hezvR9I+d5PgBo+iAcvrFVYQJpLTx0jQqPKuC5tf4Yd9EnfECWR4ty2h
vz+jAius7/m4ksiw5dOH1nO5FfjQVtv6GYUM2/5Jsae8qEB3JxuiO50M4s4e
Xte6K3DKOy2mkkGGtssrojdIVeLSzfU3A3XJoFq/60JYaCUqNOy9MuqwnG/3
Ol7vU4UfW+KDpR3J4Ln4Pe1kaBU+7uq7uNOZDOscmWcpsVWo9dHb86ErGTJj
61TSWFVoMnfL0sWLDAai7sleX6rwxJomes9lMjw9mapNcnuNueH7cmsyyHA7
1nJ08ng1+kQlPJ55QAZDjw0K9/2qUT+mP0MliwxTjqo0t6vVyE05fSf8CRkO
H+2LV3xSjW0F0f7GbDKY+Ba+Oz1RjTMDTSYllWQ4EZD5OTigBo23WnY/GiHD
aSeTHV/v1aKOdf5VgS9kSK4x+ucOpxbV3IkGx8bJUL7WS9S6rhYJd9uT5KfI
QLvQKy39sxY/jh9yuDtHhjBNq0MV5nUYmerSFypOgaw1wYJFv+qwcf7c0JGN
FNjcTH7zxq0BuYT2O890KDCeYjaYEdSARao6pjL6FGhSVdwQc7cB061nHrZv
oYBdatKX8qoGPPs08MRuMwqs6/2mc1K1EckO4V/07SiwyNczzj/ZiA5ldydJ
wRQ4U80oMklowpnOxqTjIRSYuxs2bFDQhHE/BExKwyhg7565Zm9jE9Zq+N51
vEqBtn+vHG3ha0a9dJvN2bEUcPmiqGt2rhmJ4bRwo0wKBJHORfKpt2DtniSa
ey0FZDt6qj/JtKKbRws+q6dAa076lqNqrbh0RdhD4s0yfzOBt9/0W1EP/Z+z
WynAb/yt0+hQKz7Utnf5+44C71qedjITWpf9tOzT2xMUmJcWJAzItKH+h1Sj
chIVjj6SotI12rF4MYpnlEIF/dLev8wt7agj719JkqZCRTJldP+edtRyOGjh
LkeF2LxrfM3e7bjsdWzIylT4NJuhkFTQjjK1l708dKkQ9GdXyoWtHTib55xK
taPCNwVqcZNzJ/o17XUCByoopcnmZPp04vTXLUqnjlCBr2ht/Y0rnTi1VuYx
14UKKjL6zfE5nTia2cI+5UEFhw18M7dnO/Ft4vb6V4FUMCza8G17Qhc++3f1
nHcaFerWP7T+/aEb3XPVz9fco8KF23dvrJ7tRlqf9sSqB1R44pIp5yHVgz6G
MNj+iAoRg8GPYVsPqv86Urc5nwoe+0ONldN6MNkzIVmwkgpz3ZLbO5zfor+N
iGHaKBVCFqXO3Z57h6oRBM7MGBXOttwoXUnpxQ629AarCSrkmwsUVm7oRS2C
KoP/BxUaLQgb3d16cbTeRNTjDxX2X3PxlWztRTsIeqcjSQNPbXnjL3nvUV9j
MrBxE235HxXasiL6sfYwU3JRlwZKPYcj5zP60e6mxwNNAxqsaxj3O1Xej4ET
Q3W3t9KAsFvQ58FMP77I65GxN6PBV8GOhJOeAwg6FcXDtjRwfV8eztb4gLuM
4n8sBtAg7HxgzvfVg9jjbR2pFUSDZhPpgdlNg+iRLiV7LJgGKZ1NHVKmg3h9
KWr76zAaCDwyMPJ2G8TGV8GxN27QwLDvVNjnrEHcv9N9g0waDcZTuxaGNT6i
g+UWT20uDWYCt1t5mw7h7cjmmUMVNHhV3chaZzuEdeWu4cFVNChJDRxaODmE
Butu/tdQSwOJtVGSLTeGkCbS13S8lQYWWeRRk44hbK8I3pTykQaX+eyHT7h/
wj16FQt8gtKg3yrvKJY+jBHetlFrV0hD9C+6BC97GJ8/HKNaiUiDPeXXEZHq
YVQnkzXTJKShUHmFtPW3YRSZcj2qT5OGWQXjuNfGI1j9RLD61BppmPu8MWn7
yAgay1vEdFhIA1nFRuT39lF85DbTtnaPNCQGiambOYyiJDOT9u8+aYhb9+x0
js8o9hkupq09IA2nGz6xuZmjeMmukBl8RBo4PQetCCu+YMkd+Xq1M9Iw6ihl
btP2BTVFfwhcvisNb0PPNfMFjaPi75RAlQFpeBnY+On4qkn0hMVu60FpWJyk
E3cbTSIn6qhuyJA0WF8fKDF3mMRdK9Wm3n2Whpoqu7KYu5N4dnvR8dgpaTAn
SeqpC04h90az1R9eGSDWvmlwvjyFx1YJrGlVlgFbp45X9Re/Y5aFd3uQpwxU
RZ0ICkv4iYqZXz73eMnAbV5589EnPzF54fiCzhkZOPpsKMa5/CfeynNSmTgv
A5LUFTVhn36iL9XqouNlGdB5PjH/36ZpNBvcKLctVgbkY0PG13ZO47D/7LGl
IhngLA6NTanMoEp2+I9QXjr8d626MZhnDncKdy+18dPhQDmVoyozh+7u6hLK
QnTwmf8+O6g5h0/VWtdUi9KhD5S5t53ncMMTBUdRCh1uelaZ9uMc6j0tq7mt
Socp48NklYh53Mmc/C/zHzrAxFdWntwCnsw/bP46ng4KqzUCb11bQk/S8dPf
EumwbTfD1yVzCU9fOB0vnUIH/12C5J0vl9DPIHTII50O3fWO+yymlzCC++hf
ycd0cH2dqJWkxcO93/K95FApHRRnFYZN7vFwe6euqo29o8OlLPEtZeG8XEtt
jojUKllg+z9OZHnwc7VfWt0WKpYFgsa87QGCMLes0vuagIkciBN89u4nS3D5
z+/hQIMcCPokjVTuJXJ3bTjzSN1lJURnrJZ1ekDhbjpGEpIbXwkcqYSKPUIy
XJkHcxplofJQlPiwdXpWjpvpcBQdJRXg1J9F878fFLlTL65fgyQFeBPt59Ax
pcTV15iVbl2vCKK+0a0ftZS5yqQRinuZIkznCthM2KtyI/nEvWzVVoF65WaJ
0Jdq3N6WK6OJPqvgZ1D3z5MMDW54L6a+L1kFz1I8Mvzc1nPVvsptnOVTAjvL
x6aH+jS5qzYbLNEslGDln9KWf2S0uXMOup87binBwZd475HRRm5z2EG2R48S
qCl7uZpf3sSdHdnE4VVgwFLNzaKQbB1uN4/xBQNFBmy5eCn2GUuHWyy7W+fM
KgZo1wUGTLN1uOf3uXDeMxiw+oK7r3u5Dvdb0U1OyRoGePFqkfe36XCHI4Y5
3toMMO7T7FFe0OG2MRKL3poygE+vht5lqcst2PrAl7CTAQ+lGhKJNrrcWFuW
rrk5A2I3flXa66DL3Xu9sohjwQC/+D0OVW663Nrvk0Ux+xgwvfuXfWGALvcl
d1exmR0DODzJ1+5k6nLT3h3wC7JngCGn+VVzti43aNpJr9CBARrbTIXEc3W5
m9V8i1c5MiBXqyA/olSXy4m5X/zn6DLfUNXrfm90uXeeMP02ujKgwaNbrrBN
l+tTWaLn4caAYL8jpZPdulyt32+Ku04woMcij+jxUZcrRXzrJ+HOACFH16as
z7rcb+qf9Ew9GBC4vjT+41ddbqPp5EygJwN0Vtw/qfhDl5vjNF9ccIoB5mZE
0yO/dbn/A2lCUow=
"]]},
Annotation[#, "Charting`Private`Tag$20238#1"]& ],
TagBox[{
Directive[
Opacity[1.],
GrayLevel[0],
CapForm["Butt"],
AbsoluteThickness[1.6],
AbsoluteDashing[{6, 2}]],
LineBox[CompressedData["
1:eJwVVnk41AsXtoyxDWajJNuEXFFkN8WppJQQESpEi0gLUpbrhhCVtURKaHNV
iqzdGednxlqSLUTWJC1KUpaKz/fXec7znvd9znue88er6nXc4aCQgIDABkEB
gf9X3urc5iI/ITiuRt7fbcNBqphGktgJIagYqxi+vIOD7kMFdh5BQgCZBnoO
thycTStpofwtBHHCgiYv7TioO1vfdjhRCH60h4q0O3DwBv9Lp2KRECx3jjgs
5MrBMy7rBuJ/CkHyq+Zy8iEO1ulV3xycE4LLGoaX+xd7pqSVp/GCEHQEye0p
P8zBR1y7oRFRYegy3PzA7wgHR1neby3khWFyzbEzA0c5uGs8/v0PtjDwUtyv
TwVycE1U19f9kcLAdN138k0UB9+EJSrJxQpDxNJHwWPRHEw4tXnHswRheNp/
r/zHuUU9nycFay8Lg7KA+yQjjoPX7ZIOCt8TBuvpsUCPCxwUU9zSe7tJGL7G
Jf/Qv8zBwfKyuvdLSODYUlndd5eDiUX+P7KWk6C3tFqHmc9B9n01NXtVEniF
7RK1+ZeD6dmpkRVaJNBq6xAn7nPQJubYuvj1JGhqqAurfMzBCgeNYi1vEkxy
TdO/P+VgyviVG/6FJBh12qKZ0sJB0qeKhdZiElDYSs2DrRwMHuvdb1ROgojZ
0RG9dg7ufauqsYCL8ytv+3W/4qDG64eFya0kuDsYL2Hcy0FOTS0+mSJBt2Tx
LHuUg2NZP4ZmzUSgoE3O7cQfDu7JXGrpbiECb1xKdn6b52BzOvsub5MIJDb7
TAQKcPFJSqTvBRsR6Nd004oQ5mJEnNT35e4iYHP7Hv+uOBeZgeokiBSBnopu
7W1yXLTY5qQRWy8CO+c/73ivy0UBJ43QjuciYNkjoZGxlouEx/QLVosIBG87
1rLNgIsbT2Wewm4RMID+W6XGXLTK6auZ+SACNEN+eK45F21+HvT2o5Ah8a/7
Fe02XHTJC86x30kGl+HQN499uSj/cMtUthMZTtyjfL95lIs95Uu3jruSQUrt
lVLKMS7uefH0a7wXGfJEhDAkgIvuM/Pm/EAyRN5Zuv9AKBcP2Mb1GaaTQW3u
7urcBC6enLu6TKGXDK9EbGIbH3AxVT3rTd0AGe5et3q35hEXi+2zswNGyBCT
O0fLLOLi1N3brGfjZLjtcncosIyLwY5FWiECovCzLaZsO8HF0AfPzLrUReFq
yrBGXAcXz7n/cUs7IQpmSt+DNy9w8Xa8gKLFKVEIs7q1miJUhbUlwgMfQ0Rh
6uVetU5SFZIlJbw3RovCYKrU60CJKowvl/P7dkUUrHZsaeuUrcJEqm6Y3X+i
cIHZcsRcpwozeF5ZkmQx0CJRbB67V2HEt9bkwxJi8MTwWOCj/VV4QGVDLF9a
DKaGkvqLDlThmgjlk2FLxEDO3iqR8K3COtM3Vp80xaArq75c5HQV/njsNPls
uxiYCGl7rU2uQoebW60TUsRgIzh6rKmtQpPmcvPRK2JwZG5UK7uhCpX+aBhs
vCYG82KRT6hNVfjBTUR5Lk8MeoLEKYLtVXhWjjd1pEQMvqqv2iEzVIWFl9g5
1l1ioBG4s+TdnyqUDF89LaYoDm5XAlZlmCHaP3/pxlMVh7FHEZt7zRHTl52s
CtMQhzrPyUMrNiGyKp/EfFkjDk8uYRdvO6LJTxNmx0ZxkBW3WGqxD/HAiU16
N33E4dixvYfWRiJWHXDxMywRh+dG5yx0XyCSSmabv1SIw4T0diuVNkRr4ay1
+VxxkOFxlOW6EDty+2aX1YtDc6HIIcYQ4qd+r/MCPeKwXLRI0OkH4lJX/zvP
F8Rhxk/e9m8ZAgN2RA3s3y4BgT/2qkeyCSQXtBqI2EuAu+PCkJ05gdfIqgn5
uyQgn2TRr7qBwGpEg6/7JEDzQurtl1YEUtf+iQ8/IQHUVI82BwcCH8qdMbh6
RQLypM7J/DpC4NiAf3zTgATccNs2/CWLwPB13P7jIxJwm6SiqXNzkZ9JMWB8
kIBndTM6x/MINHa43+86KQGt47MJ8/kExtaM6b8nScK6M2zS9jICV/zr3S+o
JQldN7Q6slsJdA9w1TcOkoTaB7/ndkpWY3kbk5NwRhJelWr7tEhXI1W/xbI/
XBLYnmqZDvRq5H23co6JkYRB32RnL/lqVD9lENKeLgn7FXcVPVpZjZ9Py+Dx
SknwzEk8J7K5GkP/rt2WPy8Jma63w/6Lqsb2vrPtv4QooLPbIO5pbDVqm6/b
aydKgVAzw0FuQjX2zxf7/5ShgPL4j4utqdW44WxOsqUqBYYOhTjq3KpGseiw
zsFNFHjAHi95WlON6ef1vOTjKcB+vbnTVpKHduLKrs8uUYDe865+E5WHYgkU
+7BUCpxMaog0l+VhyIX36/uyKODjveLIZmUe7k28IZ9bSAFa3hl+pj4PVS+L
t2p2UCCE7lfgtY+HD24OWZgoS0Hs4YNC90p5eFDlpdGHFVKg8jvpotd/PFTK
5ehc05SCuz4ZNWrVPEzKu6rwW08KLpHU93GbeBhwZ8c0WkrBydtbJWCEh8b3
Kwu3+ErBw6cNG1OZfOSVpSjuLpWCXT6fw2+F8hHYn7ZUVErBiK71wfazfKxC
ywD5KikwDG0TkYjj49OG6breOikw8XW6eCGNj0U9+054dkuB+IB+2OADPubM
/8U/8mtxn2lvt+5BPkZY8XzCN0iDek5qoqFtDf5+ppDWt1kaln2h0Lc71WCo
3Smu+TZpmPyoaOmztwaDXTTpgo7S8E/abEelbw36+yb+F3NAGr52rk19Glez
eC836aQ4abj/xPSNKb8GzTonn+S+kAaLt7YpR6EWyT5zLz+3SsPEsvhMj621
2DYr+Nm4UxosL+yj7bGvRV9Fmlpz/6J+kG6gn2ctXjuw5vLcV2lInv45M3m2
Fmcn/YIc6TKwbCX3521+LVbIvDMQ2S0DiYoG31/Z1eG53M/29ntkwKo+lDvm
Uof2+lNHszxkgKQvqCbiVYdjzsJ39HxkQPLc53G3oDpcmq0q6x4iAxZolxyW
WYentd1/lGXJQI9Ysvi1d3VoZN1V6jMoA3FzBfVXYurR6xcVaO9kYEwkRrEt
uR4TH257VvlBBu4bmTorXK/Hd7SqfonvMvC41a6go7get/m3RXcKUcGrKP70
yGA9zhpWPjgjSwW6k8PDGIsG3F0fO88xo0LPiz8KZqKNeDTn1ibaeioETJRr
6DIbMSqEOH/Qggp79sSQDFUbsXDVHF3akgqU8u4wP3YjkpP9V3rsoEL4e2L1
pRONWOqyy17QkwpC/h8vFPc1IuOjat7mGCrs0PmLJVDzDCm1UwIBcVQYOmOR
+q31GZJy6j2y46mgbbOh69vAM5xy8lecvkSFpBNFisq/n2FndUVGfjoV7DPN
7VYbPsdrmXZJkvlUeKgYJKNT8BxZ1n+Htz6jQpkcL0UxpwmXqdn3/mla3Mfu
yy2xx03IWGCZab2kQrm0fTqJaEJSacN0VDsVGKf2718z2ISjKsxAgzdU4Jqs
CXdQfYEFMwVHro5TIe3lTpf+uy9QL7/beR+VBsq/JwcuYjO6pdUcraDTQMtJ
Yqd5ezNGRTyOYsjS4M0dR1vy+2Zs23W+sFGeBrFh2Tt7pF9ikKAJ2WgFDTSv
PFl/xeMllrtdLZU2ooHGybALZUItuF7KmUnsocFUrGx7YVELHprZoKXgTgOS
TGO8OLcFE9/qQLAnDZoO39M92dCC/ZUiR7UP0sDeryHu8EALnj1Uys84RoPQ
D/Ofv0m1In8xAZ2MpEHZx1W2Cf6taB3Q3sq6RwMrc2e7tcZtuPRA+mDAvzRg
6Q7YSli24ZiT61fefRpEKa3JmLBvw1jTAYr3Yxr49SpsHvNtwxqBT1tuVdLg
81/aZTE32xCShKpWNNGAesskPVayHY0e6BWofaMB/Z+WQOrXdiRnT1UEfaeB
idlz+5Y/7fgqqby+5gcNDO3MwnMoHRgUuP7dgTka/BXPEg7Q6sAiM2uVO8J0
KHnkXtp7qAO1Gz3T1eXoUEClCr8e7sAVo0lRGmw6/LhofGD2/St89Vrsvu16
OhzgRghWT7/CuBeR7cEWdJhNeVibIdqJn0oC1eo30SG/eZ1gyMpOfBK9u+6w
zaL+R48/fw534iZVZYl/99HhgZDd9MrPnei9tzBl1Vk6GDlxVY8JdqOs/cqn
jlF0uDJt88aV0Y31m3KGw87RQffopue71btx1apU/abzdFASLryQYN2N32dP
vTqaQodr1okRL1K7MfrqevnCPDrUaFzI6tZ8jbfamnJ0a+nQQy6Qj/LuwXOd
7mfj6ulg8m6XdXJIDx7qmfDob6RDbYpzSllSD2oNM5UvNtMh20+4aTunB4u/
7b3xvosOm3yFrmfJ9SKPOp6Z/ZEOrSnKvqMve3HQViqNQmWATa6jYq9TH/Ic
bgZ40xlwzSBIS/F4H9521nN4ymRA3MNb50LP96GPuxPNR54B6Su3XIz7rw8n
/G8k8VkMcPr1dWic1Y8LF3UuhhoyQCBpb7nwdD8qPd8RM+bGgC6fntCLboM4
3HIlYsk+BpDvxkWTfQbxXmffaSsPBvA/mc1dOjWIusP+vre9GbDhvqBXbfIg
bpy9ZOd5lAEv9BaOddUP4qGVzfLdfzPgoLmeaZrJEBZG2xbW5zAgKLifVq02
jAHx6fd+5jFAsCX4jYDBMBon9eeo32FAsbHePbtNw0hcO5YW/S8D3tJOnVzm
NYxtRYlnLIoZYHp/wPpQzjD+HGjeWM5f9KuuUTCs/BYt1tl13R1lAM1fs6VJ
awQNHB7HkT4s+m+9P3p6/Qhq+tBMvD4xoOEeP9PIfgSpl9szFCcYYDTyj+LX
UyM4/Gm32+VZBsx90LtsyxvB2CzPvkgKExz0x/7qcn+HTXMn3+5dy4TujW/D
k++NIkFtT3tqwITVji7lbZxRLNUwsFxqzIQNGwWGtNpGMdvh5+12NhPcX36y
VfwziicKQg9t28yEtqJjxZRd75HhFv3B2IUJG8cnczXIY+hWefkrPYIJniYC
Xq1hH/Dnq6aMg2eZEKqkUBWb9gFTJkkbK6KYENJcmOt4/wM2rDp1eV8cE95r
h9kY9H5Ao2wn0/xkJiz1+G7LWPcRadFy0etvMcFE4RLdVegTNthkyPk0LPL7
1vpcyv2MxoNZ67l0Weg7yjgbsWQCy+bjBcaYspBNjjl9WX0CDRTP8OlLZMFI
wKm3TH8Cdd12WfsoLOLbuOKq9hO4mE2cGGqyEJlXOH4hfgKXNvx99IihLEj6
5Bny5ydw5pFHlqyLLOx5epD6ffIbPv1nxaz/DVkIXt1epE+aQp9CrcD6m7Jw
rf+bh8qSKZTr0xtXyZOFoEiXlUpaUxhgBkPtdxfx/AXtHfZTqPVjb6PpY1mY
IXtC6I0pzPRNzxThy4K1tN6oPPsHnnESN7sxJgs/fTffqYz+icarvoY26ctB
tphCN99mFhv2PJCeN5SDQW2dx5Ves+hy8UjeGhM5CLbkFhFnZjF0/G1j6jo5
IGco7xS6M4ucR91LXTfLgVLprv5d87MIBryyd85yUGi/XMq8ZA63rr8yOR8i
ByEhA0HOOr/RzY7tq0fIQdC9VkNT5wVMjX35czdPDmqqaUprTixgI9c7OqJG
DojsfDBOWEAT7YvXnzfIQarfdZuIqgWUE+9rPtgqB2IPltOnGAJEOy9C/9qw
HJgHlX1Z8o8AYWPE+y0ksgTMNAUZe/YKEhaK1kkd1kugycs7YY++MKE8fS1U
fWAJ3DpLcR8pFyXuWPu3h/suhYjt0blfMiiEen70ZKSgPAQ1KG4l76ARhx/v
2VJ7RR6UxXtV315lEnZ6JeIyKstAcC7u1YHJJYRelX0quWwZXO9vv+TYq0BU
8v3PkzYqgOW/yTmWT5UJ4UCbEniuAJdV8Ivqa1Vi6+rjd7U8l4O9o6P+GFON
0PeikxU+LYdt22f+/DLVIJbmza6qjFSE3CPTmY+vaRK33PbjPmklyGsKDBfr
0yImOAnnIUMJinVGP9oq6BDGq2aWtOoog5F7i0lc8hpCjT7K9KlUBjupN3ba
E7pErBDlqLOmCsRGiYb9t3Yt0dsSM3Y1QAW2rOuW7D+hT0T3YtabchVoxpk9
2dcMCM3PCmtnhFTBZPnvg1v7DQkVU5MFOWtVIN3TLxKTMiZm3Qzfd1xSBYmF
5X3mRibEy6hdxUe6VWHFlTamdIgpMTOqXyKoxIKzCxfnYu+aEV0CFkEmyiz4
tS89ufG+GVG2bJvBcRUWpJLYWpQiMyLQ1rPkDYsF559Z+qT8Z0Z8Kb1YUr6S
BdrEkPT1FjPi3bl3Jf56LJjamShUPGdGtLGulr62ZMHjVcqHB23ZRNG6vFNU
Kxb0psX6rNjFJpKdHxpu2cKC8TpR/0OubGJHAr+0xJoFt7O2/vPZm000fPta
mmTLWsxvextmzrCJKmJr2WYXFjgk3PhAu8UmbvQ4Boe7suC778dlTvlsInzK
3eiJGwvEbJbYZTxkE6aap8pU9rFAYvGXlCrYRElSbtmv/SxwOcXnr3rBJtL+
fRC81nsRV3wsebyNTQTwy42OHFj0d3q/c3EXm9CdflHWeYgFyZ9IUybDbEKG
9jpYyocFoV4TVuHv2cQXrREjyyMs6LdKu46f2UST5defob4scN35cUpokk3c
d58rK/JjQaz5pJ3VNJv4H4xkmVo=
"]]},
Annotation[#, "Charting`Private`Tag$20238#2"]& ],
TagBox[{
Directive[
Opacity[1.],
GrayLevel[0],
CapForm["Butt"],
AbsoluteThickness[1.6],
AbsoluteDashing[{2, 2}]],
LineBox[CompressedData["
1:eJwVlnk01I0bxS1jDMaYQdZsE16verOEZH1CiRQRRfalRSlLtNBiK220EKWN
StqUspY83ygKMwxClkGykxQxJL9+f93znPPcc+7n/nXV/A84Bwnw8fGJ8vPx
/V8rVmax8/cKwBZx5UzjqjqkUzRTKKEC0FWm3/ygug69ex85+hwUACotNlPu
Yx3yrhQ0UI8JgPPN0x1/autQl1fduCtZALQusZy4nDq8WfmtRSlfAKQTGy+P
dNXh4e1m3Wd+CYADVozZzNRhld7b2z1zAjAhNOoyPFuH0mLrfVcvCsBQd31c
ylwdPnvj2PtVWBCs5BIsexfqcIAZ0GcpLwgxkb+Dr5NYuHX8zOC0qSAMG9jY
BEmyUCeudcIvVhAOrHOz2qvDws7oZGWZU4Kwv7pFNlKPhWcj122qOSsIJmuj
nWNXsXBg98tH+qmC4M/bK5C1moU3HFOCBB8IQpKG7Y0FSxZSlGw77tUJAi/4
nvnKLSzsKS6qGpQlwSlmqlxcJAuT80OmM5eSIPOthzX3EAtNH6urO6mR4EFk
7irzoyy8eutybIk2CebLP4UJnmChQ+J+szPmJLgkZ0DkJ7GwxFnzhXYACXJ/
HEnJuMHCS+NpN0PySLBZU0PxQRULSaMli5wXJEjWyZM1+MjCqKEOP6NiEuia
vemurGWhZ5+a5iKS4H7GXe5oAws1Pz/Nu8ghQWtE1bhXBwvL3r3Hl1MkGDnH
oLG+s3Aoc7qXZyIE0mGL38eV2LjjmpyNt+XfO6A1qV2VjeyrpjkV1kKwQ/7Q
1pplbHx5KTb4nIMQLMoJp738l43HT4v/XOotBD2KNOWnhmyUjtAgQawQOASG
hlluZqOlvavmqWoh0Mp8yJuLZSOfq+bR5loheP1qu4lNIhsJnxkWs0EIBhqT
+C8lsdEq8loktgmBmV60vmEKG9ff6Xo3OywEZYk/knJvsNHhV1DAXioZDOqK
d1mUsHF7dtQdpy1kSNL5r8LqBxvln9pO3XIlw8o9mXtJv9jYXiy3YdydDJHS
A4o1vL98rFcTZ/zJ8N3KPNuPvx69Z/9YVEaQQU5JC9/S6zFw8+kuw6tkqMu7
J2mvW49hc+kKih1kSA153Hk9vB4va2R2VnWTISdwOtj6UD2+cLp1K/zr3zyN
P/0no+txKuces2acDNQy2kOvxHqMcsnXPsInDBuPO1kczqjHo09qTFo1hCGP
5/rva6zHBO8FjyuhwnDRrNLARaQB753hU7KMFIbsiORgErUB3xcIdo8cEYaM
17ZECa0ByWKiAVbxwuDya+SztnQDnimW2TuZJgz3lXOWG6o0YDJdN9rxtTBU
P16S0G/YgBkV/pliZAqMqlu9rQ9qwOOTnIu7RCnwrqWEV7S7AQNV156qpFHA
KJDulrW3AXWOq4RFy1LA+Prn0yfCGrBqTef6US0KXMjrXul/rAGnn7v+qNlI
AXmdjuTKtAZ0vr3B7uwlCuQNPTgs8bEBjdnFFgNpFFB0Y8/41TWg8oKmgdV1
CuS6XREvqW/AYQ8hlblsCpQe3UI90NKAJ2UqpvYUUOAW30gF5WsD5l0wvWPX
SoExdUj4ttiAYjErZyhKIhCQ+erZbRMOOtXWe1SoiYC9gvPOcgsOXlUIK4/W
FIEe/aLxXisOMktfJn7TEYFAZ/XE1Rs5aPzLWLrZSgQ2m5ZEKHlyMDDUWu/2
bhEg303b9Pk4B8sDt+81LBABKnXB2OQDB0kFPPa3EhGQlGiz+1PHQTvBTP3c
NyLgnzQyXM3hYHNWF0+hWgTChDdO7u3g4CjXP4mvXQT4425xZr5xUM495H7t
oghEqYSnqcs2YvimuG6/jaLQPXX5Kv++RiQ/4hgIOYmC1jG/l8FhjXidrHY2
d6sorBd9/edzVCO+RTSY8BKFfVfazWpjG5Guv3AmJlQUfsTzK/LSG/GpzGGD
9DRR2Dzx/FrS+0Yc6g45U9ctCvJZMYxHGk0YY/aGe+CrKBTVuFEGlzch/RrV
QGpYFHYqLCos12/C1c6Pue4/REEhIuHlB4smPPVuaNUgSQxcX1Rf8tjehMse
BnD5tcWgauwFs+d8E3qHu69afVAM+les9X8634TFjdJlZw+LQfhXyxE/gWak
r2qw4caIwSth+gUlkWas+LneLTFRDA7bp8MjmWbUiDQ40nRVDLJIv1cq6Dfj
2CEJPFAqBhcDJNAjuBmPHntvn/tHDJLipQZSe5qxqetk07wAFSr7zDNMh5px
hYWZp6MwFdYIKPmMTDQj98+LkF8SVBj4Y+Hgu9iMa0/euWijRv3bX3lynvIn
pMRHt/RYU4Hm90W90/sTXk3S85c/Q4VbOQuskv5P6Cii4l5zgQphpxPydSb+
/p+lOkVfpkL/gKJ//uwnPHJu0Lwrkwpes+4en8Ra0DP5pnxWHhVezXfM3tFv
QbVUEY5WMxUuXA6/vyWuBZ/c7rU0VhGHF9IrFcK0WzFItd5oeJk4jDmrobth
Kypnlf13XUscdBfiPmyGVkzJTlf8rScOmRtmLLzdWjH8/qYZtBGHgnNhJtLx
rbj6cWmebbA4lIuOpQ9xW7Gi6JLStkJxCGfcN0m/04ZgOmpbUioOoTcW7295
0oblaBMuXy4O398bh8qVtOGrDzNVHVXikNO8y6W2vg3z271CfdvEYUpJq6h6
sQ3v/Pm3cs+8OGRri6lo+n/G4+srdsespUGnAh77pNuOv2sUr3Sto8FBsfej
BhbteNQx8o2FPQ3OJnv4Zm9sx6jtWpL8LjQosvZOe7CzHUOCk18nBtJAIjX/
lefN9r99edBSTtNgo1Bm9HHxDjRp+fEyi0WDnO26VWReB5J3z9WPcWjwMIi0
8ZdwJzby+MdWt9BgKqmEMS3TicFKDHU2lwZpTZ9uqxp24vVAndS5CRp4Dq/2
0QvvRN6PvQddJCXghUDv1fUTnVgi0W8gtE0CvndVTzye7sKErDEnpx0S0CSx
DrLIXHRaNbUv00cC4tazKx/IcnHITfC+3m4J0HiTeX9oDRflbqkt8T4iAaa3
jbJNT3Dx0Arv6aJMCfB0Pr/UULwbjexaC3f3SIC0evxglGIP+s/TgdEvASvk
PvUNaPRg8lP7mtJhCbh4nbTOX7cH+xnlXNGfEqCwc0tg9LoetA9pjG8RoANl
jYqXcWgP8gxLnxxeQocyG/Hzg9U9uK361J8yEzoIpbReOnCyF/fduWvNMKeD
vcCTbQHnezHuCJEUZEkH0bdMSmBGL+Ytn5Ok2dDB/ZW75/nnvUi+GPKPzyY6
1H38Ynq0txcLt2914velQ/jEEruWdV9QakQte10iHU6L520al+tD6vspvvDT
dNDiq4l5qtGHpDvVPrfO0CHd1tDvqH4fTrmGKM1coMNa71+HTBz6sOVtSUbu
VTool9Spup7sw+vXHFPEcunQTU5M/zPSh0y7YzGcGjqY1Locj6z5igrqTh0L
dXTgF+4y7Gv7ilKLTBPtejoMmM+o+Qx+RVLhh5m4JjocDOr7GEvqxwFV6QiD
TjrcdzhREmHZj49mH+1JH6dDUayz9pKSftTLbXPzojOgVKebk1swgB5X3u0r
kWTA+ROKoq5VAxh3/Hmc1BIGdO951inVNoCNW5PyPsozQH9pXtrH+QE8yG9M
NlrGgEJXGVNZm0Es9kgvpBkxwOVZWLp92yCai7tJEzsYUOYT1X9BYhh3zq7V
VvRmgNQ47/SzZcOY3PcfRPkyoPzKo8X+1cPILRXatyKIAR5Xcksu+Q7jyZ2F
lRn7GdAh0+c+8GIYK/8uoLBYBmRfjCdSd4ygXXgTh/mAAUbbBtzPvRlFucCr
PeEPGfA68sF3vuZRHHJ1n6h4zICSOM2h8yOjeGpNNzXgOQOKPX5bD8mO4Tu+
Udu7pQzIf6n+Oi9iDCFFoHxZHQOqPtUzz+mMo9ETvUfqkwxwZz22Fy79hssG
UuI0TSWhhef57YHYJH76THm82VwS1DdKyQjKT+JpVmxTlKUkuJdQ5II1J3G0
IEK92loSdOdSa3esncSX8duqdjlIgr3Mx1b2oUm0VlMRfeglCWV5FuVzA5MY
4Jl3aflJSfBWOfDpLvsH3m2su6P7XhJWWdW/ob2fwoQW75OnqyXBM+7jRZHW
KdzZ/t2H+1ESLo+Of5QenkLtL9Iq59mS8Ii895qn+DS+mPS8OdgqCUmav1tf
uE1jBX382q0RSeBuImvGj01jz2bxK1S6FLBrrTcuqM+gcu2mxCEPKWiWeLs+
u5aHXxrSjst6ScHVK17csz08fNDSdWi9jxRctFQUTJjmoe6XkOB7AVLg5bJZ
OldlDq14Fxx990nB4YhFo5KDc7jzH7Z82zEp6AxSj15Um8e8+M151XekwK/e
asH3zG+0NHNszRmQgmnzgEaZC4to4Pz8NGlYClwX+GWP5S6i1m6Gsf+oFNAO
ds3PVi4iPbUpQ+m7FJx0WflBb34Rv4xu80jlSYH1ZfnlWw35iFOZvl2xVGnw
aE+xaMvhI+rmwvo89aUh+J6Orv5lfsKjNHVC8rg0pPpaBcycFSRW92Sav5Fc
AnSRyO8iP4WJVyeW8UJuLgGLuPOjrsVUYvXyiaN1q2RAb9dsRrADg/BwNA3W
I2Rgizrz2nYvacJSyS6l2U4WqAevJAvmyBIqM9ePanTLwuKqH8f0jykS9+1C
mmKC5YD7aGdiroMKoZEb/yOWXx6STzp1RXPUiF3Pd9i+T5OH0MIW04sUdcJR
r0BEQlUBVPIF9nj9q0nolTtdJhcpgP9bZdvxRC2itDIkiWSlCPzHDAYj3mkT
ghEOBVCrCLYqfjeWLq4gNqw8kKPtuxSuzb33qA/VIVb5S5IVR5fC5Kkxjftc
XUIum7e8NFYJ3vvsH7ykok/c9fBDL5oyZO1bNLznsIr4XnY2CTKUYb9PQmX9
QYO//LOynP9UwC0m6vxokSGhLjkgvbtUBc7bWXX+89WIOCVA3eempQoxyzpA
brkx0dGQOJQergoFE8MjB/etIeI7MLOzWBW+fTXKOZZhQmiNKerPCqgB18ks
TJhrSqiuMV6UsVMD5/VP8+Rp5gTPw3Cw+YIa5BAPuQ7GFkR93NYXe9rUQJgW
MjMabUnMDqwq4Fdmwlczr4fzW4Fo5bM8aKzChOhUf/qtbUAUKdgbHFBlwqur
3EPgAUTEZt+CTiYTHnkZb0j0AeJb4fmC4n+Y8HRfwDdaMBD9Cf0FIXpMeHZI
yYl5AohGZnrhZxsm/BsYHmT3EIh8s+xI+nom/L5r3T76GIiLbk8NbW2Z0Np1
1DE5D4hNZysLC+z++p3lTZteAvFhcqIwZTMTlgxSZL3KgSgnNhSt284ESq1d
b2gTEDfbXaJi3JmQJWvlKdUCRMyUt9FLj7/5xjJaC9uAWKMVWaTqxQTRXb71
c11AFKRkFc37MSHUzL4yYQiIKw+fROkHMEFwt/baf0aBCK8sNtoTyIT59CD8
OA6E7gyrqGUnEzQ2jZbRfgIhwfgcJb6bCfdmDMzyp//ya381stnDBPXJ1tcu
s0DU2Uz8OhrMhDRWk+mvOSAee88V5e9lwn41rbKMBSD+B6Q2EbU=
"]]},
Annotation[#, "Charting`Private`Tag$20238#3"]& ]}}, {}, {}}, {Ticks -> {
Charting`ScaledTicks[{Log, Exp}], Automatic}, GridLines -> {
Charting`ScaledTickValues[{Log, Exp}], Automatic},
FrameTicks -> {{Automatic, Automatic}, {
Charting`ScaledTicks[{Log, Exp}],
Charting`ScaledFrameTicks[{Log, Exp}]}}, DisplayFunction -> Identity,
Method -> {
"DefaultBoundaryStyle" -> Automatic, "DefaultMeshStyle" ->
AbsolutePointSize[6], "ScalingFunctions" -> None}, DisplayFunction ->
Identity, DisplayFunction -> Identity, Ticks -> {Quiet[
Charting`ScaledTicks[{Log, Exp}][#, #2, {6, 6}]]& , Automatic},
AxesOrigin -> NCache[{
Log[10], 0}, {2.302585092994046, 0}], FrameTicks -> {{Automatic,
Charting`ScaledFrameTicks[{Identity, Identity}]}, {Quiet[
Charting`ScaledTicks[{Log, Exp}][#, #2, {6, 6}]]& ,
Charting`ScaledFrameTicks[{Log, Exp}]}},
GridLines -> {{2.302585092994046, 3.912023005428146, 4.605170185988092,
6.214608098422191, 6.907755278982137, 8.517193191416238,
9.210340371976184}, Automatic}, DisplayFunction -> Identity,
PlotRangePadding -> {{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}}, PlotRangeClipping -> True, ImagePadding -> All,
DisplayFunction -> Identity,
Method -> {
"DefaultBoundaryStyle" -> Automatic, "DefaultMeshStyle" ->
AbsolutePointSize[6], "ScalingFunctions" -> None,
"ClippingRange" -> {{{2.3025852339686432`,
9.210340231001586}, {-33.981223601908695`, -0.054787997681217684`}}, \
{{2.3025852339686432`,
9.210340231001586}, {-33.981223601908695`, -0.054787997681217684`}}}},
DisplayFunction -> Identity, AspectRatio ->
NCache[GoldenRatio^(-1), 0.6180339887498948], Axes -> {True, True},
AxesLabel -> {None, None}, AxesOrigin -> {2.302585092994046, 0},
AxesStyle -> GrayLevel[0], BaseStyle -> GrayLevel[0],
CoordinatesToolOptions -> {"DisplayFunction" -> ({
Exp[
Part[#, 1]],
Part[#, 2]}& ), "CopiedValueFunction" -> ({
Exp[
Part[#, 1]],
Part[#, 2]}& )}, DisplayFunction :> Identity,
Frame -> {{False, False}, {False, False}},
FrameLabel -> {{None, None}, {None, None}}, FrameStyle -> GrayLevel[0],
FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}},
FrameTicksStyle -> GrayLevel[0], GridLines -> {Automatic, Automatic},
GridLinesStyle -> Directive[
GrayLevel[0],
AbsoluteThickness[1],
AbsoluteDashing[{1, 2}]], LabelStyle -> {FontFamily -> "Helvetica",
GrayLevel[0]},
Method -> {
"DefaultBoundaryStyle" -> Automatic, "DefaultMeshStyle" ->
AbsolutePointSize[6], "ScalingFunctions" -> None}, PlotRange ->
NCache[{{
Log[10],
Log[10000]}, {-33.981223601908695`, 0.}}, {{2.302585092994046,
9.210340371976184}, {-33.981223601908695`, 0.}}], PlotRangeClipping ->
True, PlotRangePadding -> {{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.02],
Scaled[0.02]}}, Ticks -> {Automatic, Automatic}, TicksStyle ->
GrayLevel[0]}],FormBox[
FormBox[
TemplateBox[{
RowBox[{"db", "(",
RowBox[{"A", "(",
RowBox[{
RowBox[{"\[ImaginaryI]", " ", "2", " ", "\[Pi]", " ", "f", " ",
SuperscriptBox["10", "6"]}], ",", "250"}], ")"}], ")"}],
RowBox[{"db", "(",
RowBox[{"A", "(",
RowBox[{
RowBox[{"\[ImaginaryI]", " ", "2", " ", "\[Pi]", " ", "f", " ",
SuperscriptBox["10", "6"]}], ",", "500"}], ")"}], ")"}],
RowBox[{"db", "(",
RowBox[{"A", "(",
RowBox[{
RowBox[{"\[ImaginaryI]", " ", "2", " ", "\[Pi]", " ", "f", " ",
SuperscriptBox["10", "6"]}], ",", "1000"}], ")"}], ")"}]},
"LineLegend", DisplayFunction -> (FormBox[
StyleBox[
StyleBox[
PaneBox[
TagBox[
GridBox[{{
TagBox[
GridBox[{{
GraphicsBox[{{
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
GrayLevel[0],
CapForm["Butt"],
AbsoluteThickness[1.6],
AbsoluteDashing[{}]], {
LineBox[{{0, 10}, {40, 10}}]}}, {
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
GrayLevel[0],
CapForm["Butt"],
AbsoluteThickness[1.6],
AbsoluteDashing[{}]], {}}}, AspectRatio -> Full,
ImageSize -> {40, 10}, PlotRangePadding -> None,
ImagePadding -> Automatic,
BaselinePosition -> (Scaled[0.1] -> Baseline)], #}, {
GraphicsBox[{{
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
GrayLevel[0],
CapForm["Butt"],
AbsoluteThickness[1.6],
AbsoluteDashing[{6, 2}]], {
LineBox[{{0, 10}, {40, 10}}]}}, {
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
GrayLevel[0],
CapForm["Butt"],
AbsoluteThickness[1.6],
AbsoluteDashing[{6, 2}]], {}}}, AspectRatio -> Full,
ImageSize -> {40, 10}, PlotRangePadding -> None,
ImagePadding -> Automatic,
BaselinePosition -> (Scaled[0.1] -> Baseline)], #2}, {
GraphicsBox[{{
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
GrayLevel[0],
CapForm["Butt"],
AbsoluteThickness[1.6],
AbsoluteDashing[{2, 2}]], {
LineBox[{{0, 10}, {40, 10}}]}}, {
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
GrayLevel[0],
CapForm["Butt"],
AbsoluteThickness[1.6],
AbsoluteDashing[{2, 2}]], {}}}, AspectRatio -> Full,
ImageSize -> {40, 10}, PlotRangePadding -> None,
ImagePadding -> Automatic,
BaselinePosition -> (Scaled[0.1] -> Baseline)], #3}},
GridBoxAlignment -> {
"Columns" -> {Center, Left}, "Rows" -> {{Baseline}}},
AutoDelete -> False,
GridBoxDividers -> {
"Columns" -> {{False}}, "Rows" -> {{False}}},
GridBoxItemSize -> {"Columns" -> {{All}}, "Rows" -> {{All}}},
GridBoxSpacings -> {
"Columns" -> {{0.5}}, "Rows" -> {{0.8}}}], "Grid"]}},
GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}},
AutoDelete -> False,
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}},
GridBoxSpacings -> {"Columns" -> {{1}}, "Rows" -> {{0}}}],
"Grid"], Alignment -> Left, AppearanceElements -> None,
ImageMargins -> {{5, 5}, {5, 5}}, ImageSizeAction ->
"ResizeToFit"], LineIndent -> 0, StripOnInput -> False], {
FontFamily -> "Helvetica",
GrayLevel[0], FontFamily -> "Arial"}, Background -> Automatic,
StripOnInput -> False], TraditionalForm]& ),
InterpretationFunction :> (RowBox[{"LineLegend", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"Directive", "[",
RowBox[{
RowBox[{"Opacity", "[", "1.`", "]"}], ",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
GrayLevel[0],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle -> GrayLevel[0.], FrameTicks -> None,
PlotRangePadding -> None, ImageSize ->
Dynamic[{
Automatic, 1.35 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}]], "GrayLevel[0]"],
Appearance -> None, BaseStyle -> {}, BaselinePosition ->
Baseline, DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
GrayLevel[0];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["GrayLevelColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
GrayLevel[0], Editable -> False, Selectable -> False],
",",
RowBox[{"CapForm", "[", "\"Butt\"", "]"}], ",",
RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}], ",",
RowBox[{"AbsoluteDashing", "[",
RowBox[{"{", "}"}], "]"}]}], "]"}], ",",
RowBox[{"Directive", "[",
RowBox[{
RowBox[{"Opacity", "[", "1.`", "]"}], ",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
GrayLevel[0],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle -> GrayLevel[0.], FrameTicks -> None,
PlotRangePadding -> None, ImageSize ->
Dynamic[{
Automatic, 1.35 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}]], "GrayLevel[0]"],
Appearance -> None, BaseStyle -> {}, BaselinePosition ->
Baseline, DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
GrayLevel[0];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["GrayLevelColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
GrayLevel[0], Editable -> False, Selectable -> False],
",",
RowBox[{"CapForm", "[", "\"Butt\"", "]"}], ",",
RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}], ",",
RowBox[{"AbsoluteDashing", "[",
RowBox[{"{",
RowBox[{"6", ",", "2"}], "}"}], "]"}]}], "]"}], ",",
RowBox[{"Directive", "[",
RowBox[{
RowBox[{"Opacity", "[", "1.`", "]"}], ",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
GrayLevel[0],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle -> GrayLevel[0.], FrameTicks -> None,
PlotRangePadding -> None, ImageSize ->
Dynamic[{
Automatic, 1.35 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}]], "GrayLevel[0]"],
Appearance -> None, BaseStyle -> {}, BaselinePosition ->
Baseline, DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
GrayLevel[0];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["GrayLevelColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
GrayLevel[0], Editable -> False, Selectable -> False],
",",
RowBox[{"CapForm", "[", "\"Butt\"", "]"}], ",",
RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}], ",",
RowBox[{"AbsoluteDashing", "[",
RowBox[{"{",
RowBox[{"2", ",", "2"}], "}"}], "]"}]}], "]"}]}], "}"}],
",",
RowBox[{"{",
RowBox[{
TagBox[#, HoldForm], ",",
TagBox[#2, HoldForm], ",",
TagBox[#3, HoldForm]}], "}"}], ",",
RowBox[{"LegendMarkers", "\[Rule]", "None"}], ",",
RowBox[{"LabelStyle", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"FontFamily", "\[Rule]", "\"Helvetica\""}], ",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
GrayLevel[0],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle -> GrayLevel[0.], FrameTicks -> None,
PlotRangePadding -> None, ImageSize ->
Dynamic[{
Automatic, 1.35 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}]], "GrayLevel[0]"],
Appearance -> None, BaseStyle -> {}, BaselinePosition ->
Baseline, DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
GrayLevel[0];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["GrayLevelColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
GrayLevel[0], Editable -> False, Selectable -> False]}],
"}"}]}], ",",
RowBox[{"LegendLayout", "\[Rule]", "\"Column\""}]}], "]"}]& ),
Editable -> True], TraditionalForm], TraditionalForm]},
"Legended",
DisplayFunction->(GridBox[{{
TagBox[
ItemBox[
PaneBox[
TagBox[#, "SkipImageSizeLevel"], Alignment -> {Center, Baseline},
BaselinePosition -> Baseline], DefaultBaseStyle -> "Labeled"],
"SkipImageSizeLevel"],
ItemBox[#2, DefaultBaseStyle -> "LabeledLabel"]}},
GridBoxAlignment -> {"Columns" -> {{Center}}, "Rows" -> {{Center}}},
AutoDelete -> False, GridBoxItemSize -> Automatic,
BaselinePosition -> {1, 1}]& ),
Editable->True,
InterpretationFunction->(RowBox[{"Legended", "[",
RowBox[{#, ",",
RowBox[{"Placed", "[",
RowBox[{#2, ",", "After"}], "]"}]}], "]"}]& )]], "Output",
CellChangeTimes->{{3.750427658111781*^9, 3.750427724412365*^9}, {
3.750427784879159*^9, 3.750427791284754*^9}, 3.7504313389761333`*^9, {
3.750431372449177*^9, 3.750431406595257*^9}, {3.750431509573329*^9,
3.750431528978643*^9}, {3.750431685525756*^9, 3.750431693660101*^9}, {
3.7504333791291533`*^9,
3.750433387425762*^9}},ExpressionUUID->"042a5a4f-b929-4e20-a923-\
d6a88622669c"]
}, Open ]]
},
WindowSize->{808, 755},
WindowMargins->{{182, Automatic}, {0, Automatic}},
FrontEndVersion->"11.2 for Mac OS X x86 (32-bit, 64-bit Kernel) (September \
10, 2017)",
StyleDefinitions->"Default.nb"
]
(* End of Notebook Content *)
(* Internal cache information *)
(*CellTagsOutline
CellTagsIndex->{}
*)
(*CellTagsIndex
CellTagsIndex->{}
*)
(*NotebookFileOutline
Notebook[{
Cell[CellGroupData[{
Cell[580, 22, 2363, 63, 244, "Input",ExpressionUUID->"996b2263-53d6-4fb9-b952-6bf0b29af9cf"],
Cell[2946, 87, 619, 14, 52, "Output",ExpressionUUID->"f72d5ae3-1a59-4f24-bfd6-0d690d855f33"],
Cell[3568, 103, 40639, 765, 268, "Output",ExpressionUUID->"042a5a4f-b929-4e20-a923-d6a88622669c"]
}, Open ]]
}
]
*)
(* End of internal cache information *)