-
Notifications
You must be signed in to change notification settings - Fork 287
/
Copy pathtutorial_PG.py
283 lines (227 loc) · 9.7 KB
/
tutorial_PG.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
"""
Vanilla Policy Gradient(VPG or REINFORCE)
-----------------------------------------
The policy gradient algorithm works by updating policy parameters via stochastic gradient ascent on policy performance.
It's an on-policy algorithm can be used for environments with either discrete or continuous action spaces.
Here is an example on discrete action space game CartPole-v0.
To apply it on continuous action space, you need to change the last softmax layer and the choose_action function.
Reference
---------
Cookbook: Barto A G, Sutton R S. Reinforcement Learning: An Introduction[J]. 1998.
MorvanZhou's tutorial page: https://morvanzhou.github.io/tutorials/
Environment
-----------
Openai Gym CartPole-v0, discrete action space
Prerequisites
--------------
tensorflow >=2.0.0a0
tensorflow-probability 0.6.0
tensorlayer >=2.0.0
To run
------
python tutorial_PG.py --train/test
"""
import argparse
import os
import time
import gym
import matplotlib.pyplot as plt
import numpy as np
import tensorflow as tf
import tensorlayer as tl
parser = argparse.ArgumentParser(description='Train or test neural net motor controller.')
parser.add_argument('--train', dest='train', action='store_true', default=True)
parser.add_argument('--test', dest='train', action='store_false')
args = parser.parse_args()
##################### hyper parameters ####################
ENV_NAME = 'CartPole-v0' # 定义环境
RANDOMSEED = 1 # 设置随机种子。建议大家都设置,这样试验可以重现。
DISPLAY_REWARD_THRESHOLD = 400 # 如果奖励超过DISPLAY_REWARD_THRESHOLD,就开始渲染
RENDER = False # 开始的时候,不渲染游戏。
num_episodes = 2 # 游戏迭代次数
############################### PG ####################################
class PolicyGradient:
"""
PG class
"""
def __init__(self, n_features, n_actions, learning_rate=0.01, reward_decay=0.95):
# 定义相关参数
self.n_actions = n_actions #动作
self.n_features = n_features #环境特征数量
self.lr = learning_rate #学习率
self.gamma = reward_decay #折扣
#用于保存每个ep的数据。
self.ep_obs, self.ep_as, self.ep_rs = [], [], []
def get_model(inputs_shape):
"""
创建一个神经网络
输入: state
输出: act
"""
with tf.name_scope('inputs'):
self.tf_obs = tl.layers.Input(inputs_shape, tf.float32, name="observations")
#self.tf_acts = tl.layers.Input([None,], tf.int32, name="actions_num")
#self.tf_vt = tl.layers.Input([None,], tf.float32, name="actions_value")
# fc1
layer = tl.layers.Dense(
n_units=30, act=tf.nn.tanh, W_init=tf.random_normal_initializer(mean=0, stddev=0.3),
b_init=tf.constant_initializer(0.1), name='fc1'
)(self.tf_obs)
# fc2
all_act = tl.layers.Dense(
n_units=self.n_actions, act=None, W_init=tf.random_normal_initializer(mean=0, stddev=0.3),
b_init=tf.constant_initializer(0.1), name='all_act'
)(layer)
return tl.models.Model(inputs=self.tf_obs, outputs=all_act, name='PG model')
self.model = get_model([None, n_features])
self.model.train()
self.optimizer = tf.optimizers.Adam(self.lr)
def choose_action(self, s):
"""
用神经网络输出的**策略pi**,选择动作。
输入: state
输出: act
"""
_logits = self.model(np.array([s], np.float32))
_probs = tf.nn.softmax(_logits).numpy()
return tl.rein.choice_action_by_probs(_probs.ravel()) #根据策略PI选择动作。
def choose_action_greedy(self, s):
"""
贪心算法:直接用概率最大的动作
输入: state
输出: act
"""
_probs = tf.nn.softmax(self.model(np.array([s], np.float32))).numpy()
return np.argmax(_probs.ravel())
def store_transition(self, s, a, r):
"""
保存数据到buffer中
"""
self.ep_obs.append(np.array([s], np.float32))
self.ep_as.append(a)
self.ep_rs.append(r)
def learn(self):
"""
通过带权重更新方法更新神经网络
"""
# _discount_and_norm_rewards中存储的就是这一ep中,每个状态的G值。
discounted_ep_rs_norm = self._discount_and_norm_rewards()
with tf.GradientTape() as tape:
# 把s放入神经网络,就算_logits
_logits = self.model(np.vstack(self.ep_obs))
# 敲黑板
## _logits和真正的动作的差距
# 差距也可以这样算,和sparse_softmax_cross_entropy_with_logits等价的:
# neg_log_prob = tf.reduce_sum(-tf.log(self.all_act_prob)*tf.one_hot(self.tf_acts, self.n_actions), axis=1)
neg_log_prob = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=_logits, labels=np.array(self.ep_as))
# 在原来的差距乘以G值,也就是以G值作为更新
loss = tf.reduce_mean(neg_log_prob * discounted_ep_rs_norm)
grad = tape.gradient(loss, self.model.trainable_weights)
self.optimizer.apply_gradients(zip(grad, self.model.trainable_weights))
self.ep_obs, self.ep_as, self.ep_rs = [], [], [] # empty episode data
return discounted_ep_rs_norm
def _discount_and_norm_rewards(self):
"""
通过回溯计算G值
"""
# 先创建一个数组,大小和ep_rs一样。ep_rs记录的是每个状态的收获r。
discounted_ep_rs = np.zeros_like(self.ep_rs)
running_add = 0
# 从ep_rs的最后往前,逐个计算G
for t in reversed(range(0, len(self.ep_rs))):
running_add = running_add * self.gamma + self.ep_rs[t]
discounted_ep_rs[t] = running_add
# 归一化G值。
# 我们希望G值有正有负,这样比较容易学习。
discounted_ep_rs -= np.mean(discounted_ep_rs)
discounted_ep_rs /= np.std(discounted_ep_rs)
return discounted_ep_rs
def save_ckpt(self):
"""
save trained weights
:return: None
"""
if not os.path.exists('model'):
os.makedirs('model')
tl.files.save_weights_to_hdf5('model/pg_policy.hdf5', self.model)
def load_ckpt(self):
"""
load trained weights
:return: None
"""
tl.files.load_hdf5_to_weights_in_order('model/pg_policy.hdf5', self.model)
if __name__ == '__main__':
# reproducible
np.random.seed(RANDOMSEED)
tf.random.set_seed(RANDOMSEED)
tl.logging.set_verbosity(tl.logging.DEBUG)
env = gym.make(ENV_NAME)
env.seed(RANDOMSEED) # reproducible, general Policy gradient has high variance
env = env.unwrapped
print(env.action_space)
print(env.observation_space)
print(env.observation_space.high)
print(env.observation_space.low)
RL = PolicyGradient(
n_actions=env.action_space.n,
n_features=env.observation_space.shape[0],
learning_rate=0.02,
reward_decay=0.99,
# output_graph=True,
)
if args.train:
reward_buffer = []
#=====开始更新训练=====
for i_episode in range(num_episodes):
episode_time = time.time()
observation = env.reset()
while True:
if RENDER:
env.render()
# 注意:这里没有用贪婪算法,而是根据pi随机动作,以保证一定的探索性。
action = RL.choose_action(observation)
observation_, reward, done, info = env.step(action)
# 保存数据
RL.store_transition(observation, action, reward)
# PG用的是MC,如果到了最终状态
if done:
ep_rs_sum = sum(RL.ep_rs)
if 'running_reward' not in globals():
running_reward = ep_rs_sum
else:
running_reward = running_reward * 0.99 + ep_rs_sum * 0.01
#如果超过DISPLAY_REWARD_THRESHOLD就开始渲染游戏吧。
if running_reward > DISPLAY_REWARD_THRESHOLD:
RENDER = True
# print("episode:", i_episode, " reward:", int(running_reward))
print(
"Episode [%d/%d] \tsum reward: %d \trunning reward: %f \ttook: %.5fs " %
(i_episode, num_episodes, ep_rs_sum, running_reward, time.time() - episode_time)
)
reward_buffer.append(running_reward)
# 开始学习
vt = RL.learn()
# 画图
plt.ion()
plt.cla()
plt.title('PG')
plt.plot(reward_buffer, )
plt.xlabel('episode steps')
plt.ylabel('normalized state-action value')
plt.show()
plt.pause(0.1)
break
# 开始新一步
observation = observation_
RL.save_ckpt()
plt.ioff()
plt.show()
# =====test=====
RL.load_ckpt()
observation = env.reset()
while True:
env.render()
action = RL.choose_action(observation) # 这里建议大家可以改贪婪算法获取动作,对比效果是否有不同。
observation, reward, done, info = env.step(action)
if done:
observation = env.reset()