forked from openvinotoolkit/openvino
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexecutable_network.cpp
870 lines (783 loc) · 41.1 KB
/
executable_network.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
// Copyright (C) 2018-2023 Intel Corporation
// SPDX-License-Identifier: Apache-2.0
//
// clang-format off
#include "ie_metric_helpers.hpp"
#include "executable_network.hpp"
#include "async_infer_request.hpp"
#include "itt.hpp"
#include "ie_precision.hpp"
#include "openvino/core/dimension.hpp"
#include "openvino/core/except.hpp"
#include "openvino/core/type.hpp"
#include "openvino/core/type/element_type.hpp"
#include "openvino/op/result.hpp"
#include "transformations/utils/utils.hpp"
#include "openvino/op/parameter.hpp"
#include "xml_parse_utils.h"
#include <caseless.hpp>
#include <vector>
#include <deque>
#include <map>
#include <utility>
#include <fstream>
#include <algorithm>
#include <string>
#include <memory>
#include <unordered_set>
#include <array>
#include <cstdint>
#include "openvino/pass/serialize.hpp"
#include "openvino/runtime/properties.hpp"
#include "ie_ngraph_utils.hpp"
#include "ie_plugin_config.hpp"
#include "ie_algorithm.hpp"
#include "cpp_interfaces/interface/ie_internal_plugin_config.hpp"
#include "plugin.hpp"
#include <ie_algorithm.hpp>
#include <ngraph/function.hpp>
#include <ngraph/graph_util.hpp>
#include <ngraph/op/result.hpp>
#include <ngraph/op/parameter.hpp>
#include <ngraph/op/util/op_types.hpp>
#include <ngraph/rt_info.hpp>
#include "graph_debug_dump.hpp"
// clang-format on
using namespace InferenceEngine;
using namespace details;
using namespace HeteroPlugin;
using namespace InferenceEngine::PluginConfigParams;
using namespace InferenceEngine::HeteroConfigParams;
template <typename T>
using NodeMap = std::unordered_map<ngraph::Node*, T>;
HeteroExecutableNetwork::HeteroExecutableNetwork(const InferenceEngine::CNNNetwork& network,
const Configs& user_config,
Engine* plugin)
: InferenceEngine::ExecutableNetworkThreadSafeDefault(nullptr,
std::make_shared<InferenceEngine::ImmediateExecutor>()),
_heteroPlugin{plugin},
_name{network.getName()},
_hetero_config{},
_device_config{} {
auto function = network.getFunction();
auto clonedFunction = ngraph::clone_function(*function);
// hetero_config, device_config and user_config are unchanged global and local configs set by user
// we need to create _hetero_config and _device_config based on them, which will
// contain only hetero (_hetero_config) and only device (_device_config) properties
auto parsed_config = _heteroPlugin->MergeConfigs(user_config);
_hetero_config = parsed_config.hetero_config;
_device_config = parsed_config.device_config;
bool dumpDotFile = false;
if (std::getenv("OPENVINO_HETERO_VISUALIZE")) {
dumpDotFile = true;
} else {
auto itDumpDotFile = _hetero_config.find(HETERO_CONFIG_KEY(DUMP_GRAPH_DOT));
dumpDotFile = itDumpDotFile != _hetero_config.end() ? (itDumpDotFile->second == YES) : false;
}
QueryNetworkResult queryNetworkResult;
auto orderedOps = clonedFunction->get_ordered_ops();
bool allEmpty = true;
// Get user defined affinity
for (auto&& node : orderedOps) {
auto& nodeInfo = node->get_rt_info();
auto itInfo = nodeInfo.find("affinity");
if (itInfo != nodeInfo.end()) {
IE_ASSERT(itInfo->second.is<std::string>());
queryNetworkResult.supportedLayersMap.emplace(node->get_friendly_name(), itInfo->second.as<std::string>());
allEmpty = false;
}
}
if (queryNetworkResult.supportedLayersMap.empty()) {
// here we need to bypass unchanged / unparsed user-set configuration
// because it can contain TARGET_FALLBACK / ov::device::priorities
queryNetworkResult = _heteroPlugin->QueryNetwork(network, user_config);
}
using Input = ngraph::Input<ngraph::Node>;
using NodeSet = std::unordered_set<ngraph::Node*>;
using InputSet = std::set<Input>;
auto InputNode = [](const ngraph::Input<ngraph::Node>& input) {
return input.get_source_output().get_node();
};
std::unordered_set<std::string> devices;
NodeMap<std::string> affinities;
// Check that all nodes has user or plugin defined affinities
for (auto&& node : orderedOps) {
auto itAffinity = queryNetworkResult.supportedLayersMap.find(node->get_friendly_name());
if (itAffinity != queryNetworkResult.supportedLayersMap.end()) {
affinities[node.get()] = itAffinity->second;
devices.emplace(itAffinity->second);
} else if (allEmpty) {
IE_THROW() << "Hetero device used default fallback policy, but some layers eg: \n(Name:"
<< node->get_friendly_name() << ", Type: " << node->get_type_name()
<< ") were not able to be assigned on any pointed device.\n"
<< "It happened because these layers are not supported in plugins by default.\n"
<< "You need to implement custom layers to support them.";
} else {
IE_THROW() << "Network passed to LoadNetwork has affinity assigned, but some layers eg: \n(Name:"
<< node->get_friendly_name() << ", Type: " << node->get_type_name()
<< ") were not assigned to any device.\n"
<< "It might happen if you assigned layers manually and missed some layers or\n"
<< "if you used some automatic assigning mode which decided that these layers are not\n"
<< "supported by any plugin";
}
}
if (dumpDotFile) {
ov::hetero::debug::dump_affinities(std::const_pointer_cast<ov::Model>(function),
queryNetworkResult.supportedLayersMap,
devices);
}
NodeMap<InputSet> nodeInputDependencies;
NodeSet graphInputNodes;
InputSet subgraphInputs;
// Get all subgraph inputs using just node affinities. Also collect transitive closure
for (auto&& node : orderedOps) {
if (ngraph::op::is_parameter(node) || ngraph::op::is_constant(node)) {
graphInputNodes.insert(node.get());
subgraphInputs.insert(Input{node.get(), 0});
nodeInputDependencies[node.get()].insert(Input{node.get(), 0});
} else {
auto inputs = node->inputs();
auto& nodeInputDependency = nodeInputDependencies[node.get()];
for (auto&& input : inputs) {
nodeInputDependency.insert(input);
auto& inputDependency = nodeInputDependencies[InputNode(input)];
nodeInputDependency.insert(inputDependency.begin(), inputDependency.end());
if (affinities[node.get()] != affinities[InputNode(input)]) {
subgraphInputs.insert(input);
}
}
}
}
// Assign each node subgraph ID
auto CollectSubgraphs = [&] {
std::deque<int> subgraphIds;
NodeMap<int*> subgraphIdPtrs;
for (auto&& node : orderedOps) {
auto allNodeInputs = node->inputs();
std::vector<Input> inputs;
for (auto&& input : allNodeInputs) {
if (!contains(subgraphInputs, input)) {
inputs.emplace_back(std::move(input));
}
}
if (inputs.empty()) {
subgraphIds.push_back(static_cast<int>(subgraphIds.size()));
subgraphIdPtrs.emplace(node.get(), &(subgraphIds.back()));
} else {
auto firstInputSubgraphIdPtr = subgraphIdPtrs[InputNode(inputs.front())];
for (auto&& input : inputs) {
auto inputId = *subgraphIdPtrs[InputNode(input)];
for (auto& subgraphId : subgraphIds) {
if (subgraphId == inputId) {
subgraphId = *firstInputSubgraphIdPtr;
}
}
}
subgraphIdPtrs.emplace(node.get(), firstInputSubgraphIdPtr);
}
}
NodeMap<int> result;
for (auto&& subgraphIdPtr : subgraphIdPtrs) {
result.emplace(subgraphIdPtr.first, *(subgraphIdPtr.second));
}
return result;
};
// Split cyclic dependencies.
for (std::size_t prevSubgraphs = 0, cyclicSplitStep = 0; prevSubgraphs != subgraphInputs.size();
++cyclicSplitStep) {
IE_ASSERT(cyclicSplitStep < orderedOps.size());
prevSubgraphs = subgraphInputs.size();
auto subgraphIds = CollectSubgraphs();
// All inputs that belong to the same subgraph as node
std::unordered_map<ngraph::Node*, InputSet> nodeSubgraphInputDependencies;
// All inputs that depends on the same subgraph as node
std::unordered_map<ngraph::Node*, InputSet> nodeSubgraphCyclicInputDependencies;
for (auto&& node : orderedOps) {
auto& nodeSubgraphInputDependency = nodeSubgraphInputDependencies[node.get()];
auto allNodeSubgraphInputs = Intersection(nodeInputDependencies[node.get()], subgraphInputs);
for (auto&& subgraphInput : allNodeSubgraphInputs) {
if (subgraphIds[node.get()] == subgraphIds[subgraphInput.get_node()]) {
nodeSubgraphInputDependency.emplace(subgraphInput);
}
}
auto& nodeSubgraphCyclicInputDependency = nodeSubgraphCyclicInputDependencies[node.get()];
for (auto&& subgraphInput : allNodeSubgraphInputs) {
if (!ngraph::op::is_parameter(subgraphInput.get_node()) &&
!ngraph::op::is_constant(subgraphInput.get_node()) &&
subgraphIds[node.get()] == subgraphIds[InputNode(subgraphInput)]) {
nodeSubgraphCyclicInputDependency.emplace(subgraphInput);
}
}
}
for (auto&& node : orderedOps) {
auto& nodeSubgraphCyclicInputDependency = nodeSubgraphCyclicInputDependencies[node.get()];
if (!nodeSubgraphCyclicInputDependency.empty()) {
// Collect all subgraph inputs that cyclic subgraph output depends on
InputSet cyclicInputsDependencies;
for (auto&& cyclicInput : nodeSubgraphCyclicInputDependency) {
for (auto&& input : nodeSubgraphInputDependencies[InputNode(cyclicInput)]) {
cyclicInputsDependencies.emplace(input);
}
}
for (auto&& input : node->inputs()) {
auto& inputNodeSubgraphCyclicInputDependency =
nodeSubgraphCyclicInputDependencies[InputNode(input)];
auto& inputNodeSubgraphInputDependency = nodeSubgraphInputDependencies[InputNode(input)];
if (!Intersects(nodeSubgraphCyclicInputDependency, inputNodeSubgraphCyclicInputDependency) &&
Intersects(cyclicInputsDependencies, inputNodeSubgraphInputDependency)) {
subgraphInputs.insert(input);
}
}
}
}
}
auto subgraphIds = CollectSubgraphs();
if (dumpDotFile) {
std::map<std::string, int> map_id;
for (auto&& v : subgraphIds) {
map_id.emplace(v.first->get_friendly_name(), v.second);
}
ov::hetero::debug::dump_subgraphs(std::const_pointer_cast<ov::Model>(function),
queryNetworkResult.supportedLayersMap,
map_id);
}
// Break graph using insertion of result parameter split
NodeMap<ngraph::Node*> subgraphParameterToPrevResult;
std::vector<std::shared_ptr<ngraph::op::Result>> results;
{
std::set<ngraph::Output<ngraph::Node>> subgraphOutputs;
for (auto&& input : subgraphInputs) {
if (!ngraph::op::is_parameter(input.get_node()) && !ngraph::op::is_constant(input.get_node())) {
subgraphOutputs.insert(input.get_source_output());
}
}
for (auto&& output : subgraphOutputs) {
auto output_subgraph_id = subgraphIds.at(output.get_node());
auto inputs = output.get_target_inputs();
// Collect input subsets from other subgraphs. Each subset of inputs belongs to the same subgraph
std::map<int, std::set<ngraph::Input<ngraph::Node>>> input_subsets;
for (auto&& input : inputs) {
auto input_subgraph_id = subgraphIds.at(input.get_node());
if (output_subgraph_id != input_subgraph_id) {
input_subsets[input_subgraph_id].emplace(input);
}
}
auto result = std::make_shared<ngraph::op::Result>(output);
result->set_friendly_name(output.get_node()->get_friendly_name() + "_" +
std::to_string(output.get_index()) + "_result");
ngraph::copy_runtime_info(output.get_node_shared_ptr(), result);
subgraphIds.emplace(result.get(), output_subgraph_id);
results.push_back(result);
for (auto&& input_subset : input_subsets) {
for (auto&& input : input_subset.second) {
output.remove_target_input(input);
auto parameter =
std::make_shared<ngraph::op::Parameter>(output.get_element_type(), output.get_partial_shape());
parameter->set_friendly_name(input.get_node()->get_friendly_name() + "_" +
std::to_string(input.get_index()) + "_parameter");
ngraph::copy_runtime_info(input.get_node()->shared_from_this(), parameter);
input.replace_source_output(parameter->output(0));
subgraphIds.emplace(parameter.get(), input_subset.first);
subgraphParameterToPrevResult.emplace(parameter.get(), result.get());
_blobNameMap.emplace(
parameter->get_friendly_name(),
output.get_node()->get_friendly_name() + ((output.get_node()->get_output_size() != 1)
? ("." + std::to_string(output.get_index()))
: std::string{}));
}
}
}
}
struct Subgraph {
ngraph::ResultVector _results;
ngraph::ParameterVector _parameters;
ngraph::SinkVector _sinks;
std::string _affinity;
};
std::unordered_map<int, Subgraph> subgraphs;
// Extracts subgraph parameters, results and affinities
for (auto&& subgraphIdPtrValue : subgraphIds) {
auto node = subgraphIdPtrValue.first;
auto& subgraph = subgraphs[subgraphIdPtrValue.second];
if (ngraph::op::is_output(node)) {
subgraph._results.emplace_back(std::dynamic_pointer_cast<ngraph::op::v0::Result>(node->shared_from_this()));
} else if (ngraph::op::is_parameter(node)) {
subgraph._parameters.emplace_back(
std::dynamic_pointer_cast<ngraph::op::v0::Parameter>(node->shared_from_this()));
} else if (ngraph::op::is_sink(node)) {
subgraph._sinks.emplace_back(std::dynamic_pointer_cast<ngraph::op::Sink>(node->shared_from_this()));
}
auto itAffinity = affinities.find(node);
if (itAffinity != affinities.end()) {
subgraph._affinity = itAffinity->second;
}
}
results = {};
// Subgraph topological sort
std::vector<Subgraph> allSubgraphs;
for (auto&& subgraph : subgraphs) {
allSubgraphs.emplace_back(std::move(subgraph.second));
}
std::vector<Subgraph> orderedSubgraphs;
NodeSet prevResults;
size_t subgraphTopoSortsStep = 0;
do {
IE_ASSERT(subgraphTopoSortsStep < subgraphs.size());
++subgraphTopoSortsStep;
std::vector<Subgraph> newOrderedSubgraphs;
auto IsOrderedSubGraph = [&](const Subgraph& subgraph) {
auto& parameters = subgraph._parameters;
return std::all_of(parameters.begin(),
parameters.end(),
[&](const ngraph::ParameterVector::value_type& parameter) {
return contains(graphInputNodes, parameter.get()) ||
contains(prevResults, subgraphParameterToPrevResult[parameter.get()]);
});
};
std::remove_copy_if(std::begin(allSubgraphs),
std::end(allSubgraphs),
std::back_inserter(newOrderedSubgraphs),
[&](const Subgraph& subgraph) {
return !IsOrderedSubGraph(subgraph);
});
allSubgraphs.erase(std::remove_if(std::begin(allSubgraphs), std::end(allSubgraphs), IsOrderedSubGraph),
std::end(allSubgraphs));
for (auto&& subgraph : newOrderedSubgraphs) {
for (auto&& result : subgraph._results) {
prevResults.insert(result.get());
}
}
std::move(std::begin(newOrderedSubgraphs), std::end(newOrderedSubgraphs), std::back_inserter(orderedSubgraphs));
} while (!allSubgraphs.empty());
InputsDataMap externalInputsData = network.getInputsInfo();
OutputsDataMap externalOutputsData = network.getOutputsInfo();
_networks.resize(orderedSubgraphs.size());
std::vector<std::shared_ptr<ngraph::Function>> subFunctions(orderedSubgraphs.size());
int id = 0;
for (auto&& subgraph : orderedSubgraphs) {
_networks[id]._device = subgraph._affinity;
subFunctions[id] = std::make_shared<ngraph::Function>(subgraph._results,
subgraph._sinks,
subgraph._parameters,
_name + '_' + std::to_string(id));
_networks[id]._clonedNetwork = CNNNetwork{subFunctions[id]};
// update of pre-processing info
auto clonedInputs = _networks[id]._clonedNetwork.getInputsInfo();
for (auto&& externalInput : externalInputsData) {
auto itClonedInput = clonedInputs.find(externalInput.first);
if (itClonedInput != clonedInputs.end() && nullptr != itClonedInput->second) {
itClonedInput->second->getPreProcess() = externalInput.second->getPreProcess();
itClonedInput->second->setPrecision(externalInput.second->getPrecision());
itClonedInput->second->setLayout(externalInput.second->getLayout());
}
}
// update output info
auto clonedOutputs = _networks[id]._clonedNetwork.getOutputsInfo();
for (auto&& externalOutput : externalOutputsData) {
auto itClonedOutput = clonedOutputs.find(externalOutput.first);
if (itClonedOutput != clonedOutputs.end() && nullptr != itClonedOutput->second) {
itClonedOutput->second->setPrecision(externalOutput.second->getPrecision());
itClonedOutput->second->setLayout(externalOutput.second->getLayout());
}
}
auto toLegacyType = [](const ngraph::element::Type& ngraph_type) {
return (ngraph_type == ngraph::element::f16 || ngraph_type == ngraph::element::bf16) ? ngraph::element::f32
: ngraph_type;
};
// CNNNetwork converts input and output types to preserve legacy behaviour
// Here io types are reverted to ngraph types with some common plugin behaviour assumption
// defined in `toLegacyType()`
for (auto&& input : clonedInputs) {
if (!InferenceEngine::details::contains(externalInputsData, input.first)) {
for (auto&& parameter : subgraph._parameters) {
auto name = parameter->get_friendly_name();
if (parameter->get_friendly_name() == input.first) {
input.second->setPrecision(
InferenceEngine::details::convertPrecision(toLegacyType(parameter->get_element_type())));
}
}
}
}
for (auto&& output : clonedOutputs) {
if (!InferenceEngine::details::contains(externalOutputsData, output.first)) {
for (auto&& result : subgraph._results) {
auto source_output = result->input_value(0);
auto output_name = ov::op::util::create_ie_output_name(source_output);
if (output_name == output.first) {
output.second->setPrecision(
InferenceEngine::details::convertPrecision(toLegacyType(source_output.get_element_type())));
}
}
}
}
++id;
}
for (auto&& network : _networks) {
auto metaDevices = _heteroPlugin->GetDevicePlugins(network._device, _device_config);
// disable caching for subgraphs, because the whole HETERO model is cached
auto device_config = metaDevices[network._device];
device_config[ov::cache_dir.name()] = "";
network._network =
_heteroPlugin->GetCore()->LoadNetwork(network._clonedNetwork, network._device, device_config);
}
}
HeteroExecutableNetwork::HeteroExecutableNetwork(std::istream& heteroModel,
const Configs& user_config,
Engine* heteroPlugin,
bool fromCache)
: _heteroPlugin(heteroPlugin),
_hetero_config{},
_device_config{},
_loadedFromCache(fromCache) {
std::string heteroXmlStr;
std::getline(heteroModel, heteroXmlStr);
auto parsed_config = _heteroPlugin->MergeConfigs(user_config);
_hetero_config = parsed_config.hetero_config;
_device_config = parsed_config.device_config;
pugi::xml_document heteroXmlDoc;
pugi::xml_parse_result res = heteroXmlDoc.load_string(heteroXmlStr.c_str());
if (res.status != pugi::status_ok) {
IE_THROW(NetworkNotRead) << "Error reading HETERO device xml header";
}
using namespace pugixml::utils;
pugi::xml_node heteroNode = heteroXmlDoc.document_element();
_name = GetStrAttr(heteroNode, "name");
std::unordered_set<std::string> networkInputs;
pugi::xml_node inputsNode = heteroNode.child("inputs");
FOREACH_CHILD (inputNode, inputsNode, "input") { networkInputs.insert(GetStrAttr(inputNode, "name")); }
std::unordered_set<std::string> networkOutputs;
pugi::xml_node outputsNode = heteroNode.child("outputs");
FOREACH_CHILD (outputNode, outputsNode, "output") { networkOutputs.insert(GetStrAttr(outputNode, "name")); }
auto heteroConfigsNode = heteroNode.child("hetero_config");
FOREACH_CHILD (heteroConfigNode, heteroConfigsNode, "config") {
_hetero_config.emplace(GetStrAttr(heteroConfigNode, "key"), GetStrAttr(heteroConfigNode, "value"));
}
auto deviceConfigsNode = heteroNode.child("device_config");
FOREACH_CHILD (deviceConfigNode, deviceConfigsNode, "config") {
_device_config.emplace(GetStrAttr(deviceConfigNode, "key"), GetStrAttr(deviceConfigNode, "value"));
}
auto blobNamesNode = heteroNode.child("blob_names_map");
FOREACH_CHILD (blobNameNode, blobNamesNode, "blob_name_map") {
_blobNameMap.emplace(GetStrAttr(blobNameNode, "key"), GetStrAttr(blobNameNode, "value"));
}
std::vector<NetworkDesc> descs;
pugi::xml_node subnetworksNode = heteroNode.child("subnetworks");
FOREACH_CHILD (subnetworkNode, subnetworksNode, "subnetwork") {
auto deviceName = GetStrAttr(subnetworkNode, "device");
auto metaDevices = _heteroPlugin->GetDevicePlugins(deviceName, _device_config);
assert(metaDevices.size() == 1);
auto& loadConfig = metaDevices[deviceName];
InferenceEngine::SoExecutableNetworkInternal executableNetwork;
CNNNetwork cnnnetwork;
bool loaded = false;
if (_heteroPlugin->GetCore()->DeviceSupportsModelCaching(deviceName)) {
executableNetwork = _heteroPlugin->GetCore()->ImportNetwork(heteroModel, deviceName, loadConfig);
} else {
// read XML content
std::string xmlString;
std::uint64_t dataSize = 0;
heteroModel.read(reinterpret_cast<char*>(&dataSize), sizeof(dataSize));
xmlString.resize(dataSize);
heteroModel.read(const_cast<char*>(xmlString.c_str()), dataSize);
// read blob content
InferenceEngine::Blob::Ptr dataBlob;
heteroModel.read(reinterpret_cast<char*>(&dataSize), sizeof(dataSize));
if (0 != dataSize) {
dataBlob = InferenceEngine::make_shared_blob<std::uint8_t>(
InferenceEngine::TensorDesc(InferenceEngine::Precision::U8,
{static_cast<std::size_t>(dataSize)},
InferenceEngine::Layout::C));
dataBlob->allocate();
heteroModel.read(dataBlob->buffer(), dataSize);
}
cnnnetwork = _heteroPlugin->GetCore()->ReadNetwork(xmlString, std::move(dataBlob));
auto inputs = cnnnetwork.getInputsInfo();
auto inputsNode = subnetworkNode.child("inputs");
FOREACH_CHILD (inputNode, inputsNode, "input") {
auto inputName = GetStrAttr(inputNode, "name");
inputs[inputName]->setPrecision(Precision::FromStr(GetStrAttr(inputNode, "precision")));
}
auto outputs = cnnnetwork.getOutputsInfo();
auto outputsNode = subnetworkNode.child("outputs");
FOREACH_CHILD (outputNode, outputsNode, "output") {
auto outputName = GetStrAttr(outputNode, "name");
outputs[outputName]->setPrecision(Precision::FromStr(GetStrAttr(outputNode, "precision")));
}
executableNetwork = _heteroPlugin->GetCore()->LoadNetwork(cnnnetwork, deviceName, loadConfig);
loaded = true;
}
// restore network inputs and outputs
for (auto&& input : executableNetwork->GetInputsInfo()) {
if (networkInputs.end() != networkInputs.find(input.first)) {
_networkInputs.emplace(input.first, std::make_shared<InputInfo>(*input.second));
}
}
for (auto&& output : executableNetwork->GetOutputsInfo()) {
if (networkOutputs.end() != networkOutputs.find(output.first)) {
_networkOutputs.emplace(output.first, std::make_shared<Data>(*output.second));
}
}
descs.emplace_back(NetworkDesc{
deviceName,
loaded ? cnnnetwork : CNNNetwork{},
executableNetwork,
});
}
const auto parseNode = [](const pugi::xml_node& xml_node, bool is_param) -> std::shared_ptr<const ov::Node> {
const std::string operation_name = GetStrAttr(xml_node, "operation_name");
const auto elementType = ov::EnumNames<ov::element::Type_t>::as_enum(GetStrAttr(xml_node, "element_type"));
std::vector<ov::Dimension> partialShape;
pugi::xml_node partialShapeNode = xml_node.child("partial_shape");
FOREACH_CHILD (dimNode, partialShapeNode, "dim") {
partialShape.emplace_back(ov::Dimension(GetInt64Attr(dimNode, "value")));
}
pugi::xml_node tensorNamesNode = xml_node.child("tensor_names");
std::unordered_set<std::string> tensorNames;
FOREACH_CHILD (tensorNameNode, tensorNamesNode, "tensor_name") {
tensorNames.insert(GetStrAttr(tensorNameNode, "value"));
}
std::shared_ptr<ov::Node> node = std::make_shared<ov::op::v0::Parameter>(elementType, partialShape);
// For result operation_name is name of previous operation
node->set_friendly_name(operation_name);
if (!is_param)
node = std::make_shared<ov::op::v0::Result>(node);
node->output(0).get_tensor().add_names(tensorNames);
return node;
};
(void)parseNode;
pugi::xml_node parametersNode = heteroNode.child("parameters");
FOREACH_CHILD (parameterNode, parametersNode, "parameter") {
_parameters.emplace_back(parseNode(parameterNode, true));
}
pugi::xml_node resultsNode = heteroNode.child("results");
FOREACH_CHILD (resultNode, resultsNode, "result") { _results.emplace_back(parseNode(resultNode, false)); }
// save state
this->_networks = std::move(descs);
this->SetPointerToPlugin(_heteroPlugin->shared_from_this());
}
void HeteroExecutableNetwork::Export(std::ostream& heteroModel) {
pugi::xml_document doc;
auto heteroNode = doc.append_child("hetero");
heteroNode.append_attribute("name").set_value(_name.c_str());
// CNNNetwork inputs and outputs information
auto inputsNode = heteroNode.append_child("inputs");
for (auto&& networkInput : _networkInputs) {
inputsNode.append_child("input").append_attribute("name").set_value(networkInput.first.c_str());
}
auto outputsNode = heteroNode.append_child("outputs");
for (auto&& networkInput : _networkOutputs) {
outputsNode.append_child("output").append_attribute("name").set_value(networkInput.first.c_str());
}
const auto serializeNode = [&](const std::shared_ptr<const ov::Node>& node, pugi::xml_node& xml_node) {
const bool is_result = ov::is_type<ov::op::v0::Result>(node);
const std::string name =
is_result ? ov::op::util::create_ie_output_name(node->input_value(0)) : node->get_friendly_name();
xml_node.append_attribute("operation_name").set_value(name.c_str());
xml_node.append_attribute("element_type").set_value(node->get_output_element_type(0).get_type_name().c_str());
const auto& pShape = node->get_output_partial_shape(0);
OPENVINO_ASSERT(pShape.rank().is_static(), "Serialization of shapes with dynamic rank is not supported");
auto partialShapeNode = xml_node.append_child("partial_shape");
for (auto&& dim : node->get_output_partial_shape(0)) {
if (dim.is_dynamic())
partialShapeNode.append_child("dim").append_attribute("value").set_value("-1");
else
partialShapeNode.append_child("dim").append_attribute("value").set_value(
std::to_string(dim.get_length()).c_str());
}
auto tensorNamesNode = xml_node.append_child("tensor_names");
for (auto& tensorName : node->get_output_tensor(0).get_names()) {
tensorNamesNode.append_child("tensor_name").append_attribute("value").set_value(tensorName.c_str());
}
};
// ngraph parameters info
auto subnetworkParamsNode = heteroNode.append_child("parameters");
for (auto&& parameter : getInputs()) {
auto parameterNode = subnetworkParamsNode.append_child("parameter");
serializeNode(parameter, parameterNode);
}
// ngraph results info
auto subnetworkResultsNode = heteroNode.append_child("results");
for (auto&& result : getOutputs()) {
auto parameterNode = subnetworkResultsNode.append_child("result");
serializeNode(result, parameterNode);
}
auto subnetworksNode = heteroNode.append_child("subnetworks");
for (auto&& subnetwork : _networks) {
auto subnet = subnetwork._clonedNetwork;
IE_ASSERT(subnet.getFunction() != nullptr);
auto subnetworkNode = subnetworksNode.append_child("subnetwork");
subnetworkNode.append_attribute("device").set_value(subnetwork._device.c_str());
// inputs info
auto subnetworkInputsNode = subnetworkNode.append_child("inputs");
auto inputInfo = subnet.getInputsInfo();
for (auto&& input : inputInfo) {
auto inputNode = subnetworkInputsNode.append_child("input");
inputNode.append_attribute("name").set_value(input.first.c_str());
inputNode.append_attribute("precision").set_value(input.second->getPrecision().name());
}
// outputs info
auto subnetworkOutputsNode = subnetworkNode.append_child("outputs");
auto outputInfo = subnet.getOutputsInfo();
for (auto&& output : outputInfo) {
auto outputNode = subnetworkOutputsNode.append_child("output");
outputNode.append_attribute("name").set_value(output.first.c_str());
outputNode.append_attribute("precision").set_value(output.second->getPrecision().name());
}
}
auto heteroConfigsNode = heteroNode.append_child("hetero_config");
for (auto&& config : _hetero_config) {
auto heteroConfigNode = heteroConfigsNode.append_child("config");
heteroConfigNode.append_attribute("key").set_value(config.first.c_str());
heteroConfigNode.append_attribute("value").set_value(config.second.c_str());
}
auto deviceConfigsNode = heteroNode.append_child("device_config");
for (auto&& config : _device_config) {
auto deviceConfigNode = deviceConfigsNode.append_child("config");
deviceConfigNode.append_attribute("key").set_value(config.first.c_str());
deviceConfigNode.append_attribute("value").set_value(config.second.c_str());
}
auto blobNamesNode = heteroNode.append_child("blob_names_map");
for (auto&& kvp : _blobNameMap) {
auto blobNameNode = blobNamesNode.append_child("blob_name_map");
blobNameNode.append_attribute("key").set_value(kvp.first.c_str());
blobNameNode.append_attribute("value").set_value(kvp.second.c_str());
}
doc.save(heteroModel, nullptr, pugi::format_raw);
doc.reset();
heteroModel << std::endl;
for (auto&& subnetwork : _networks) {
if (_heteroPlugin->GetCore()->DeviceSupportsModelCaching(subnetwork._device)) {
subnetwork._network->Export(heteroModel);
} else {
auto subnet = subnetwork._clonedNetwork;
if (!subnet.getFunction()) {
IE_THROW() << "Hetero device supports only ngraph function representation";
}
// Note: custom ngraph extensions are not supported
std::stringstream xmlFile, binFile;
ov::pass::Serialize serializer(xmlFile, binFile, ov::pass::Serialize::Version::IR_V10);
serializer.run_on_model(subnet.getFunction());
auto m_constants = binFile.str();
auto m_model = xmlFile.str();
auto dataSize = static_cast<std::uint64_t>(m_model.size());
heteroModel.write(reinterpret_cast<char*>(&dataSize), sizeof(dataSize));
heteroModel.write(m_model.c_str(), dataSize);
dataSize = static_cast<std::uint64_t>(m_constants.size());
heteroModel.write(reinterpret_cast<char*>(&dataSize), sizeof(dataSize));
heteroModel.write(reinterpret_cast<char*>(&m_constants[0]), dataSize);
}
}
}
IInferRequestInternal::Ptr HeteroExecutableNetwork::CreateInferRequestImpl(
const std::vector<std::shared_ptr<const ov::Node>>& inputs,
const std::vector<std::shared_ptr<const ov::Node>>& outputs) {
if (!this->_plugin || !_plugin->IsNewAPI())
return nullptr;
HeteroInferRequest::SubRequestsList inferRequests;
int index = 0;
for (auto&& subnetwork : _networks) {
HeteroInferRequest::SubRequestDesc desc;
desc._network = subnetwork._network;
desc._profilingTask = openvino::itt::handle("Infer" + std::to_string(index++));
inferRequests.push_back(desc);
}
return std::make_shared<HeteroInferRequest>(inputs, outputs, inferRequests, _blobNameMap);
}
IInferRequestInternal::Ptr HeteroExecutableNetwork::CreateInferRequestImpl(InputsDataMap networkInputs,
OutputsDataMap networkOutputs) {
HeteroInferRequest::SubRequestsList inferRequests;
int index = 0;
for (auto&& subnetwork : _networks) {
HeteroInferRequest::SubRequestDesc desc;
desc._network = subnetwork._network;
desc._profilingTask = openvino::itt::handle("Infer" + std::to_string(index++));
inferRequests.push_back(desc);
}
return std::make_shared<HeteroInferRequest>(networkInputs, networkOutputs, inferRequests, _blobNameMap);
}
IInferRequestInternal::Ptr HeteroExecutableNetwork::CreateInferRequest() {
return CreateAsyncInferRequestFromSync<HeteroAsyncInferRequest>();
}
InferenceEngine::Parameter HeteroExecutableNetwork::GetConfig(const std::string& name) const {
InferenceEngine::Parameter result;
if (name == "TARGET_FALLBACK" || name == ov::device::priorities.name()) {
result = _heteroPlugin->GetTargetFallback(_hetero_config, false);
} else if (name == HETERO_CONFIG_KEY(DUMP_GRAPH_DOT)) {
auto it = _hetero_config.find(name);
IE_ASSERT(it != _hetero_config.end());
result = it->second == YES;
} else if (name == CONFIG_KEY(EXCLUSIVE_ASYNC_REQUESTS)) {
auto it = _device_config.find(name);
IE_ASSERT(it != _device_config.end());
result = it->second == YES;
} else {
IE_THROW() << "Unsupported Hetero ExecutableNetwork config key: " << name;
}
return result;
}
InferenceEngine::Parameter HeteroExecutableNetwork::GetMetric(const std::string& name) const {
if (ov::supported_properties == name) {
return decltype(ov::supported_properties)::value_type{
ov::PropertyName{ov::supported_properties.name(), ov::PropertyMutability::RO},
ov::PropertyName{ov::model_name.name(), ov::PropertyMutability::RO},
ov::PropertyName{ov::optimal_number_of_infer_requests.name(), ov::PropertyMutability::RO},
ov::PropertyName{ov::execution_devices.name(), ov::PropertyMutability::RO},
ov::PropertyName{ov::loaded_from_cache.name(), ov::PropertyMutability::RO},
ov::PropertyName{ov::device::properties.name(), ov::PropertyMutability::RO},
ov::PropertyName{ov::device::priorities.name(), ov::PropertyMutability::RO}};
} else if (EXEC_NETWORK_METRIC_KEY(SUPPORTED_METRICS) == name) {
std::vector<std::string> heteroMetrics = {ov::model_name.name(),
METRIC_KEY(SUPPORTED_METRICS),
METRIC_KEY(SUPPORTED_CONFIG_KEYS),
ov::loaded_from_cache.name(),
ov::optimal_number_of_infer_requests.name(),
ov::execution_devices.name()};
IE_SET_METRIC_RETURN(SUPPORTED_METRICS, heteroMetrics);
} else if (EXEC_NETWORK_METRIC_KEY(SUPPORTED_CONFIG_KEYS) == name) {
std::vector<std::string> heteroConfigKeys = {"TARGET_FALLBACK",
ov::device::priorities.name(),
HETERO_CONFIG_KEY(DUMP_GRAPH_DOT),
CONFIG_KEY(EXCLUSIVE_ASYNC_REQUESTS)};
IE_SET_METRIC_RETURN(SUPPORTED_CONFIG_KEYS, heteroConfigKeys);
} else if (ov::device::properties == name) {
ov::AnyMap all_devices = {};
for (auto&& subnetwork : _networks) {
ov::AnyMap device_properties = {};
if (all_devices.count(subnetwork._device) == 0) {
auto device_supported_metrics = subnetwork._network->GetMetric(METRIC_KEY(SUPPORTED_METRICS));
for (auto&& property_name : device_supported_metrics.as<std::vector<std::string>>()) {
device_properties[property_name] = subnetwork._network->GetMetric(property_name);
}
auto device_supported_configs = subnetwork._network->GetMetric(METRIC_KEY(SUPPORTED_CONFIG_KEYS));
for (auto&& property_name : device_supported_configs.as<std::vector<std::string>>()) {
device_properties[property_name] = subnetwork._network->GetConfig(property_name);
}
all_devices[subnetwork._device] = device_properties;
}
}
return all_devices;
} else if (ov::model_name == name) {
return decltype(ov::model_name)::value_type{_name};
} else if (ov::loaded_from_cache == name) {
return decltype(ov::loaded_from_cache)::value_type{_loadedFromCache};
} else if (ov::optimal_number_of_infer_requests == name) {
unsigned int value = 0u;
for (auto&& desc : _networks) {
value = std::max(value,
desc._network->GetMetric(METRIC_KEY(OPTIMAL_NUMBER_OF_INFER_REQUESTS)).as<unsigned int>());
}
return decltype(ov::optimal_number_of_infer_requests)::value_type{value};
} else if (name == ov::execution_devices) {
std::vector<std::string> exeDevices;
std::set<std::string> s;
for (auto&& subnetwork : _networks) {
if (s.count(subnetwork._device) != 0)
continue;
s.insert(subnetwork._device);
exeDevices.push_back(subnetwork._device);
}
return decltype(ov::execution_devices)::value_type{exeDevices};
} else {
IE_THROW() << "Unsupported Hetero ExecutableNetwork metric key: " << name;
}
}