-
Notifications
You must be signed in to change notification settings - Fork 304
/
Copy pathapp.py
1203 lines (1126 loc) · 43 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import io
import base64
import os
import sys
import numpy as np
import torch
from torch import autocast
import diffusers
assert tuple(map(int,diffusers.__version__.split("."))) >= (0,9,0), "Please upgrade diffusers to 0.9.0"
from diffusers.configuration_utils import FrozenDict
from diffusers import (
StableDiffusionPipeline,
StableDiffusionInpaintPipeline,
StableDiffusionImg2ImgPipeline,
StableDiffusionInpaintPipelineLegacy,
DDIMScheduler,
LMSDiscreteScheduler,
DiffusionPipeline,
StableDiffusionUpscalePipeline,
DPMSolverMultistepScheduler,
PNDMScheduler,
)
from diffusers.models import AutoencoderKL
from PIL import Image
from PIL import ImageOps
import gradio as gr
import base64
import skimage
import skimage.measure
import yaml
import json
from enum import Enum
from utils import *
try:
abspath = os.path.abspath(__file__)
dirname = os.path.dirname(abspath)
os.chdir(dirname)
except:
pass
try:
from interrogate import Interrogator
except:
Interrogator = DummyInterrogator
USE_NEW_DIFFUSERS = True
RUN_IN_SPACE = "RUN_IN_HG_SPACE" in os.environ
class ModelChoice(Enum):
INPAINTING = "stablediffusion-inpainting"
INPAINTING2 = "stablediffusion-2-inpainting"
INPAINTING_IMG2IMG = "stablediffusion-inpainting+img2img-1.5"
MODEL_2_1 = "stablediffusion-2.1"
MODEL_2_0_V = "stablediffusion-2.0v"
MODEL_2_0 = "stablediffusion-2.0"
MODEL_1_5 = "stablediffusion-1.5"
MODEL_1_4 = "stablediffusion-1.4"
try:
from sd_grpcserver.pipeline.unified_pipeline import UnifiedPipeline
except:
UnifiedPipeline = StableDiffusionInpaintPipeline
# sys.path.append("./glid_3_xl_stable")
USE_GLID = False
# try:
# from glid3xlmodel import GlidModel
# except:
# USE_GLID = False
try:
import onnxruntime
onnx_available = True
onnx_providers = ["CUDAExecutionProvider", "DmlExecutionProvider", "OpenVINOExecutionProvider", 'CPUExecutionProvider']
available_providers = onnxruntime.get_available_providers()
onnx_providers = [item for item in onnx_providers if item in available_providers]
except:
onnx_available = False
onnx_providers = []
try:
cuda_available = torch.cuda.is_available()
except:
cuda_available = False
finally:
if sys.platform == "darwin":
device = "mps" if torch.backends.mps.is_available() else "cpu"
elif cuda_available:
device = "cuda"
else:
device = "cpu"
if device != "cuda":
import contextlib
autocast = contextlib.nullcontext
with open("config.yaml", "r") as yaml_in:
yaml_object = yaml.safe_load(yaml_in)
config_json = json.dumps(yaml_object)
def load_html():
body, canvaspy = "", ""
with open("index.html", encoding="utf8") as f:
body = f.read()
with open("canvas.py", encoding="utf8") as f:
canvaspy = f.read()
body = body.replace("- paths:\n", "")
body = body.replace(" - ./canvas.py\n", "")
body = body.replace("from canvas import InfCanvas", canvaspy)
return body
def test(x):
x = load_html()
return f"""<iframe id="sdinfframe" style="width: 100%; height: 600px" name="result" allow="midi; geolocation; microphone; camera;
display-capture; encrypted-media; vertical-scroll 'none'" sandbox="allow-modals allow-forms
allow-scripts allow-same-origin allow-popups
allow-top-navigation-by-user-activation allow-downloads" allowfullscreen=""
allowpaymentrequest="" frameborder="0" srcdoc='{x}'></iframe>"""
DEBUG_MODE = False
try:
SAMPLING_MODE = Image.Resampling.LANCZOS
except Exception as e:
SAMPLING_MODE = Image.LANCZOS
try:
contain_func = ImageOps.contain
except Exception as e:
def contain_func(image, size, method=SAMPLING_MODE):
# from PIL: https://pillow.readthedocs.io/en/stable/reference/ImageOps.html#PIL.ImageOps.contain
im_ratio = image.width / image.height
dest_ratio = size[0] / size[1]
if im_ratio != dest_ratio:
if im_ratio > dest_ratio:
new_height = int(image.height / image.width * size[0])
if new_height != size[1]:
size = (size[0], new_height)
else:
new_width = int(image.width / image.height * size[1])
if new_width != size[0]:
size = (new_width, size[1])
return image.resize(size, resample=method)
import argparse
parser = argparse.ArgumentParser(description="stablediffusion-infinity")
parser.add_argument("--port", type=int, help="listen port", dest="server_port")
parser.add_argument("--host", type=str, help="host", dest="server_name")
parser.add_argument("--share", action="store_true", help="share this app?")
parser.add_argument("--debug", action="store_true", help="debug mode")
parser.add_argument("--fp32", action="store_true", help="using full precision")
parser.add_argument("--lowvram", action="store_true", help="using lowvram mode")
parser.add_argument("--encrypt", action="store_true", help="using https?")
parser.add_argument("--ssl_keyfile", type=str, help="path to ssl_keyfile")
parser.add_argument("--ssl_certfile", type=str, help="path to ssl_certfile")
parser.add_argument("--ssl_keyfile_password", type=str, help="ssl_keyfile_password")
parser.add_argument(
"--auth", nargs=2, metavar=("username", "password"), help="use username password"
)
parser.add_argument(
"--remote_model",
type=str,
help="use a model (e.g. dreambooth fined) from huggingface hub",
default="",
)
parser.add_argument(
"--local_model", type=str, help="use a model stored on your PC", default=""
)
if __name__ == "__main__":
args = parser.parse_args()
else:
args = parser.parse_args(["--debug"])
# args = parser.parse_args(["--debug"])
if args.auth is not None:
args.auth = tuple(args.auth)
model = {}
def get_token():
token = ""
if os.path.exists(".token"):
with open(".token", "r") as f:
token = f.read()
token = os.environ.get("hftoken", token)
return token
def save_token(token):
with open(".token", "w") as f:
f.write(token)
def prepare_scheduler(scheduler):
if hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1:
new_config = dict(scheduler.config)
new_config["steps_offset"] = 1
scheduler._internal_dict = FrozenDict(new_config)
return scheduler
def my_resize(width, height):
if width >= 512 and height >= 512:
return width, height
if width == height:
return 512, 512
smaller = min(width, height)
larger = max(width, height)
if larger >= 608:
return width, height
factor = 1
if smaller < 290:
factor = 2
elif smaller < 330:
factor = 1.75
elif smaller < 384:
factor = 1.375
elif smaller < 400:
factor = 1.25
elif smaller < 450:
factor = 1.125
return int(factor * width) // 8 * 8, int(factor * height) // 8 * 8
def load_learned_embed_in_clip(
learned_embeds_path, text_encoder, tokenizer, token=None
):
# https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb
loaded_learned_embeds = torch.load(learned_embeds_path, map_location="cpu")
# separate token and the embeds
trained_token = list(loaded_learned_embeds.keys())[0]
embeds = loaded_learned_embeds[trained_token]
# cast to dtype of text_encoder
dtype = text_encoder.get_input_embeddings().weight.dtype
embeds.to(dtype)
# add the token in tokenizer
token = token if token is not None else trained_token
num_added_tokens = tokenizer.add_tokens(token)
if num_added_tokens == 0:
raise ValueError(
f"The tokenizer already contains the token {token}. Please pass a different `token` that is not already in the tokenizer."
)
# resize the token embeddings
text_encoder.resize_token_embeddings(len(tokenizer))
# get the id for the token and assign the embeds
token_id = tokenizer.convert_tokens_to_ids(token)
text_encoder.get_input_embeddings().weight.data[token_id] = embeds
scheduler_dict = {"PLMS": None, "DDIM": None, "K-LMS": None, "DPM": None, "PNDM": None}
class StableDiffusionInpaint:
def __init__(
self, token: str = "", model_name: str = "", model_path: str = "", **kwargs,
):
self.token = token
original_checkpoint = False
if device == "cpu" and onnx_available:
from diffusers import OnnxStableDiffusionInpaintPipeline
inpaint = OnnxStableDiffusionInpaintPipeline.from_pretrained(
model_name,
revision="onnx",
provider=onnx_providers[0] if onnx_providers else None
)
else:
if model_path and os.path.exists(model_path):
if model_path.endswith(".ckpt"):
original_checkpoint = True
elif model_path.endswith(".json"):
model_name = os.path.dirname(model_path)
else:
model_name = model_path
vae = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse")
if device == "cuda" and not args.fp32:
vae.to(torch.float16)
if original_checkpoint:
print(f"Converting & Loading {model_path}")
from convert_checkpoint import convert_checkpoint
pipe = convert_checkpoint(model_path, inpainting=True)
if device == "cuda" and not args.fp32:
pipe.to(torch.float16)
inpaint = StableDiffusionInpaintPipeline(
vae=vae,
text_encoder=pipe.text_encoder,
tokenizer=pipe.tokenizer,
unet=pipe.unet,
scheduler=pipe.scheduler,
safety_checker=pipe.safety_checker,
feature_extractor=pipe.feature_extractor,
)
else:
print(f"Loading {model_name}")
if device == "cuda" and not args.fp32:
inpaint = StableDiffusionInpaintPipeline.from_pretrained(
model_name,
revision="fp16",
torch_dtype=torch.float16,
use_auth_token=token,
vae=vae,
)
else:
inpaint = StableDiffusionInpaintPipeline.from_pretrained(
model_name, use_auth_token=token, vae=vae
)
if os.path.exists("./embeddings"):
print("Note that StableDiffusionInpaintPipeline + embeddings is untested")
for item in os.listdir("./embeddings"):
if item.endswith(".bin"):
load_learned_embed_in_clip(
os.path.join("./embeddings", item),
inpaint.text_encoder,
inpaint.tokenizer,
)
inpaint.to(device)
# if device == "mps":
# _ = text2img("", num_inference_steps=1)
scheduler_dict["PLMS"] = inpaint.scheduler
scheduler_dict["DDIM"] = prepare_scheduler(
DDIMScheduler(
beta_start=0.00085,
beta_end=0.012,
beta_schedule="scaled_linear",
clip_sample=False,
set_alpha_to_one=False,
)
)
scheduler_dict["K-LMS"] = prepare_scheduler(
LMSDiscreteScheduler(
beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear"
)
)
scheduler_dict["PNDM"] = prepare_scheduler(
PNDMScheduler(
beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear",
skip_prk_steps=True
)
)
scheduler_dict["DPM"] = prepare_scheduler(
DPMSolverMultistepScheduler.from_config(inpaint.scheduler.config)
)
self.safety_checker = inpaint.safety_checker
save_token(token)
try:
total_memory = torch.cuda.get_device_properties(0).total_memory // (
1024 ** 3
)
if total_memory <= 5 or args.lowvram:
inpaint.enable_attention_slicing()
inpaint.enable_sequential_cpu_offload()
except:
pass
self.inpaint = inpaint
def run(
self,
image_pil,
prompt="",
negative_prompt="",
guidance_scale=7.5,
resize_check=True,
enable_safety=True,
fill_mode="patchmatch",
strength=0.75,
step=50,
enable_img2img=False,
use_seed=False,
seed_val=-1,
generate_num=1,
scheduler="",
scheduler_eta=0.0,
**kwargs,
):
inpaint = self.inpaint
selected_scheduler = scheduler_dict.get(scheduler, scheduler_dict["PLMS"])
for item in [inpaint]:
item.scheduler = selected_scheduler
if enable_safety or self.safety_checker is None:
item.safety_checker = self.safety_checker
else:
item.safety_checker = lambda images, **kwargs: (images, False)
width, height = image_pil.size
sel_buffer = np.array(image_pil)
img = sel_buffer[:, :, 0:3]
mask = sel_buffer[:, :, -1]
nmask = 255 - mask
process_width = width
process_height = height
if resize_check:
process_width, process_height = my_resize(width, height)
process_width = process_width * 8 // 8
process_height = process_height * 8 // 8
extra_kwargs = {
"num_inference_steps": step,
"guidance_scale": guidance_scale,
"eta": scheduler_eta,
}
if USE_NEW_DIFFUSERS:
extra_kwargs["negative_prompt"] = negative_prompt
extra_kwargs["num_images_per_prompt"] = generate_num
if use_seed:
generator = torch.Generator(inpaint.device).manual_seed(seed_val)
extra_kwargs["generator"] = generator
if True:
if fill_mode == "g_diffuser":
mask = 255 - mask
mask = mask[:, :, np.newaxis].repeat(3, axis=2)
img, mask = functbl[fill_mode](img, mask)
else:
img, mask = functbl[fill_mode](img, mask)
mask = 255 - mask
mask = skimage.measure.block_reduce(mask, (8, 8), np.max)
mask = mask.repeat(8, axis=0).repeat(8, axis=1)
# extra_kwargs["strength"] = strength
inpaint_func = inpaint
init_image = Image.fromarray(img)
mask_image = Image.fromarray(mask)
# mask_image=mask_image.filter(ImageFilter.GaussianBlur(radius = 8))
if True:
images = inpaint_func(
prompt=prompt,
image=init_image.resize(
(process_width, process_height), resample=SAMPLING_MODE
),
mask_image=mask_image.resize((process_width, process_height)),
width=process_width,
height=process_height,
**extra_kwargs,
)["images"]
return images
class StableDiffusion:
def __init__(
self,
token: str = "",
model_name: str = "runwayml/stable-diffusion-v1-5",
model_path: str = None,
inpainting_model: bool = False,
**kwargs,
):
self.token = token
original_checkpoint = False
if device=="cpu" and onnx_available:
from diffusers import OnnxStableDiffusionPipeline, OnnxStableDiffusionInpaintPipelineLegacy, OnnxStableDiffusionImg2ImgPipeline
text2img = OnnxStableDiffusionPipeline.from_pretrained(
model_name,
revision="onnx",
provider=onnx_providers[0] if onnx_providers else None
)
inpaint = OnnxStableDiffusionInpaintPipelineLegacy(
vae_encoder=text2img.vae_encoder,
vae_decoder=text2img.vae_decoder,
text_encoder=text2img.text_encoder,
tokenizer=text2img.tokenizer,
unet=text2img.unet,
scheduler=text2img.scheduler,
safety_checker=text2img.safety_checker,
feature_extractor=text2img.feature_extractor,
)
img2img = OnnxStableDiffusionImg2ImgPipeline(
vae_encoder=text2img.vae_encoder,
vae_decoder=text2img.vae_decoder,
text_encoder=text2img.text_encoder,
tokenizer=text2img.tokenizer,
unet=text2img.unet,
scheduler=text2img.scheduler,
safety_checker=text2img.safety_checker,
feature_extractor=text2img.feature_extractor,
)
else:
if model_path and os.path.exists(model_path):
if model_path.endswith(".ckpt"):
original_checkpoint = True
elif model_path.endswith(".json"):
model_name = os.path.dirname(model_path)
else:
model_name = model_path
vae = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse")
if device == "cuda" and not args.fp32:
vae.to(torch.float16)
if original_checkpoint:
print(f"Converting & Loading {model_path}")
from convert_checkpoint import convert_checkpoint
pipe = convert_checkpoint(model_path)
if device == "cuda" and not args.fp32:
pipe.to(torch.float16)
text2img = StableDiffusionPipeline(
vae=vae,
text_encoder=pipe.text_encoder,
tokenizer=pipe.tokenizer,
unet=pipe.unet,
scheduler=pipe.scheduler,
safety_checker=pipe.safety_checker,
feature_extractor=pipe.feature_extractor,
)
else:
print(f"Loading {model_name}")
if device == "cuda" and not args.fp32:
text2img = StableDiffusionPipeline.from_pretrained(
model_name,
revision="fp16",
torch_dtype=torch.float16,
use_auth_token=token,
vae=vae,
)
else:
text2img = StableDiffusionPipeline.from_pretrained(
model_name, use_auth_token=token, vae=vae
)
if inpainting_model:
# can reduce vRAM by reusing models except unet
text2img_unet = text2img.unet
del text2img.vae
del text2img.text_encoder
del text2img.tokenizer
del text2img.scheduler
del text2img.safety_checker
del text2img.feature_extractor
import gc
gc.collect()
if device == "cuda" and not args.fp32:
inpaint = StableDiffusionInpaintPipeline.from_pretrained(
"runwayml/stable-diffusion-inpainting",
revision="fp16",
torch_dtype=torch.float16,
use_auth_token=token,
vae=vae,
).to(device)
else:
inpaint = StableDiffusionInpaintPipeline.from_pretrained(
"runwayml/stable-diffusion-inpainting",
use_auth_token=token,
vae=vae,
).to(device)
text2img_unet.to(device)
text2img = StableDiffusionPipeline(
vae=inpaint.vae,
text_encoder=inpaint.text_encoder,
tokenizer=inpaint.tokenizer,
unet=text2img_unet,
scheduler=inpaint.scheduler,
safety_checker=inpaint.safety_checker,
feature_extractor=inpaint.feature_extractor,
)
else:
inpaint = StableDiffusionInpaintPipelineLegacy(
vae=text2img.vae,
text_encoder=text2img.text_encoder,
tokenizer=text2img.tokenizer,
unet=text2img.unet,
scheduler=text2img.scheduler,
safety_checker=text2img.safety_checker,
feature_extractor=text2img.feature_extractor,
).to(device)
text_encoder = text2img.text_encoder
tokenizer = text2img.tokenizer
if os.path.exists("./embeddings"):
for item in os.listdir("./embeddings"):
if item.endswith(".bin"):
load_learned_embed_in_clip(
os.path.join("./embeddings", item),
text2img.text_encoder,
text2img.tokenizer,
)
text2img.to(device)
if device == "mps":
_ = text2img("", num_inference_steps=1)
img2img = StableDiffusionImg2ImgPipeline(
vae=text2img.vae,
text_encoder=text2img.text_encoder,
tokenizer=text2img.tokenizer,
unet=text2img.unet,
scheduler=text2img.scheduler,
safety_checker=text2img.safety_checker,
feature_extractor=text2img.feature_extractor,
).to(device)
scheduler_dict["PLMS"] = text2img.scheduler
scheduler_dict["DDIM"] = prepare_scheduler(
DDIMScheduler(
beta_start=0.00085,
beta_end=0.012,
beta_schedule="scaled_linear",
clip_sample=False,
set_alpha_to_one=False,
)
)
scheduler_dict["K-LMS"] = prepare_scheduler(
LMSDiscreteScheduler(
beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear"
)
)
scheduler_dict["PNDM"] = prepare_scheduler(
PNDMScheduler(
beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear",
skip_prk_steps=True
)
)
scheduler_dict["DPM"] = prepare_scheduler(
DPMSolverMultistepScheduler.from_config(text2img.scheduler.config)
)
self.safety_checker = text2img.safety_checker
save_token(token)
try:
total_memory = torch.cuda.get_device_properties(0).total_memory // (
1024 ** 3
)
if total_memory <= 5 or args.lowvram:
inpaint.enable_attention_slicing()
inpaint.enable_sequential_cpu_offload()
if inpainting_model:
text2img.enable_attention_slicing()
text2img.enable_sequential_cpu_offload()
except:
pass
self.text2img = text2img
self.inpaint = inpaint
self.img2img = img2img
if True:
self.unified = inpaint
else:
self.unified = UnifiedPipeline(
vae=text2img.vae,
text_encoder=text2img.text_encoder,
tokenizer=text2img.tokenizer,
unet=text2img.unet,
scheduler=text2img.scheduler,
safety_checker=text2img.safety_checker,
feature_extractor=text2img.feature_extractor,
).to(device)
self.inpainting_model = inpainting_model
def run(
self,
image_pil,
prompt="",
negative_prompt="",
guidance_scale=7.5,
resize_check=True,
enable_safety=True,
fill_mode="patchmatch",
strength=0.75,
step=50,
enable_img2img=False,
use_seed=False,
seed_val=-1,
generate_num=1,
scheduler="",
scheduler_eta=0.0,
**kwargs,
):
text2img, inpaint, img2img, unified = (
self.text2img,
self.inpaint,
self.img2img,
self.unified,
)
selected_scheduler = scheduler_dict.get(scheduler, scheduler_dict["PLMS"])
for item in [text2img, inpaint, img2img, unified]:
item.scheduler = selected_scheduler
if enable_safety or self.safety_checker is None:
item.safety_checker = self.safety_checker
else:
item.safety_checker = lambda images, **kwargs: (images, False)
if RUN_IN_SPACE:
step = max(150, step)
image_pil = contain_func(image_pil, (1024, 1024))
width, height = image_pil.size
sel_buffer = np.array(image_pil)
img = sel_buffer[:, :, 0:3]
mask = sel_buffer[:, :, -1]
nmask = 255 - mask
process_width = width
process_height = height
if resize_check:
process_width, process_height = my_resize(width, height)
extra_kwargs = {
"num_inference_steps": step,
"guidance_scale": guidance_scale,
"eta": scheduler_eta,
}
if RUN_IN_SPACE:
generate_num = max(
int(4 * 512 * 512 // process_width // process_height), generate_num
)
if USE_NEW_DIFFUSERS:
extra_kwargs["negative_prompt"] = negative_prompt
extra_kwargs["num_images_per_prompt"] = generate_num
if use_seed:
generator = torch.Generator(text2img.device).manual_seed(seed_val)
extra_kwargs["generator"] = generator
if nmask.sum() < 1 and enable_img2img:
init_image = Image.fromarray(img)
if True:
images = img2img(
prompt=prompt,
image=init_image.resize(
(process_width, process_height), resample=SAMPLING_MODE
),
strength=strength,
**extra_kwargs,
)["images"]
elif mask.sum() > 0:
if fill_mode == "g_diffuser" and not self.inpainting_model:
mask = 255 - mask
mask = mask[:, :, np.newaxis].repeat(3, axis=2)
img, mask = functbl[fill_mode](img, mask)
extra_kwargs["strength"] = 1.0
extra_kwargs["out_mask"] = Image.fromarray(mask)
inpaint_func = unified
else:
img, mask = functbl[fill_mode](img, mask)
mask = 255 - mask
mask = skimage.measure.block_reduce(mask, (8, 8), np.max)
mask = mask.repeat(8, axis=0).repeat(8, axis=1)
inpaint_func = inpaint
init_image = Image.fromarray(img)
mask_image = Image.fromarray(mask)
# mask_image=mask_image.filter(ImageFilter.GaussianBlur(radius = 8))
input_image = init_image.resize(
(process_width, process_height), resample=SAMPLING_MODE
)
if self.inpainting_model:
images = inpaint_func(
prompt=prompt,
image=input_image,
width=process_width,
height=process_height,
mask_image=mask_image.resize((process_width, process_height)),
**extra_kwargs,
)["images"]
else:
extra_kwargs["strength"] = strength
if True:
images = inpaint_func(
prompt=prompt,
image=input_image,
mask_image=mask_image.resize((process_width, process_height)),
**extra_kwargs,
)["images"]
else:
if True:
images = text2img(
prompt=prompt,
height=process_width,
width=process_height,
**extra_kwargs,
)["images"]
return images
def get_model(token="", model_choice="", model_path=""):
if "model" not in model:
model_name = ""
if args.local_model:
print(f"Using local_model: {args.local_model}")
model_path = args.local_model
elif args.remote_model:
print(f"Using remote_model: {args.remote_model}")
model_name = args.remote_model
if model_choice == ModelChoice.INPAINTING.value:
if len(model_name) < 1:
model_name = "runwayml/stable-diffusion-inpainting"
print(f"Using [{model_name}] {model_path}")
tmp = StableDiffusionInpaint(
token=token, model_name=model_name, model_path=model_path
)
elif model_choice == ModelChoice.INPAINTING2.value:
if len(model_name) < 1:
model_name = "stabilityai/stable-diffusion-2-inpainting"
print(f"Using [{model_name}] {model_path}")
tmp = StableDiffusionInpaint(
token=token, model_name=model_name, model_path=model_path
)
elif model_choice == ModelChoice.INPAINTING_IMG2IMG.value:
print(
f"Note that {ModelChoice.INPAINTING_IMG2IMG.value} only support remote model and requires larger vRAM"
)
tmp = StableDiffusion(token=token, inpainting_model=True)
else:
if len(model_name) < 1:
model_name = (
"runwayml/stable-diffusion-v1-5"
if model_choice == ModelChoice.MODEL_1_5.value
else "CompVis/stable-diffusion-v1-4"
)
if model_choice == ModelChoice.MODEL_2_0.value:
model_name = "stabilityai/stable-diffusion-2-base"
elif model_choice == ModelChoice.MODEL_2_0_V.value:
model_name = "stabilityai/stable-diffusion-2"
elif model_choice == ModelChoice.MODEL_2_1.value:
model_name = "stabilityai/stable-diffusion-2-1-base"
tmp = StableDiffusion(
token=token, model_name=model_name, model_path=model_path
)
model["model"] = tmp
return model["model"]
def run_outpaint(
sel_buffer_str,
prompt_text,
negative_prompt_text,
strength,
guidance,
step,
resize_check,
fill_mode,
enable_safety,
use_correction,
enable_img2img,
use_seed,
seed_val,
generate_num,
scheduler,
scheduler_eta,
interrogate_mode,
state,
):
data = base64.b64decode(str(sel_buffer_str))
pil = Image.open(io.BytesIO(data))
if interrogate_mode:
if "interrogator" not in model:
model["interrogator"] = Interrogator()
interrogator = model["interrogator"]
img = np.array(pil)[:, :, 0:3]
mask = np.array(pil)[:, :, -1]
x, y = np.nonzero(mask)
if len(x) > 0:
x0, x1 = x.min(), x.max() + 1
y0, y1 = y.min(), y.max() + 1
img = img[x0:x1, y0:y1, :]
pil = Image.fromarray(img)
interrogate_ret = interrogator.interrogate(pil)
return (
gr.update(value=",".join([sel_buffer_str]),),
gr.update(label="Prompt", value=interrogate_ret),
state,
)
width, height = pil.size
sel_buffer = np.array(pil)
cur_model = get_model()
images = cur_model.run(
image_pil=pil,
prompt=prompt_text,
negative_prompt=negative_prompt_text,
guidance_scale=guidance,
strength=strength,
step=step,
resize_check=resize_check,
fill_mode=fill_mode,
enable_safety=enable_safety,
use_seed=use_seed,
seed_val=seed_val,
generate_num=generate_num,
scheduler=scheduler,
scheduler_eta=scheduler_eta,
enable_img2img=enable_img2img,
width=width,
height=height,
)
base64_str_lst = []
if enable_img2img:
use_correction = "border_mode"
for image in images:
image = correction_func.run(pil.resize(image.size), image, mode=use_correction)
resized_img = image.resize((width, height), resample=SAMPLING_MODE,)
out = sel_buffer.copy()
out[:, :, 0:3] = np.array(resized_img)
out[:, :, -1] = 255
out_pil = Image.fromarray(out)
out_buffer = io.BytesIO()
out_pil.save(out_buffer, format="PNG")
out_buffer.seek(0)
base64_bytes = base64.b64encode(out_buffer.read())
base64_str = base64_bytes.decode("ascii")
base64_str_lst.append(base64_str)
return (
gr.update(label=str(state + 1), value=",".join(base64_str_lst),),
gr.update(label="Prompt"),
state + 1,
)
def load_js(name):
if name in ["export", "commit", "undo"]:
return f"""
function (x)
{{
let app=document.querySelector("gradio-app");
app=app.shadowRoot??app;
let frame=app.querySelector("#sdinfframe").contentWindow.document;
let button=frame.querySelector("#{name}");
button.click();
return x;
}}
"""
ret = ""
with open(f"./js/{name}.js", "r") as f:
ret = f.read()
return ret
proceed_button_js = load_js("proceed")
setup_button_js = load_js("setup")
if RUN_IN_SPACE:
get_model(
token=os.environ.get("hftoken", ""),
model_choice=ModelChoice.INPAINTING_IMG2IMG.value,
)
blocks = gr.Blocks(
title="StableDiffusion-Infinity",
css="""
.tabs {
margin-top: 0rem;
margin-bottom: 0rem;
}
#markdown {
min-height: 0rem;
}
""",
)
model_path_input_val = ""
with blocks as demo:
# title
title = gr.Markdown(
"""
**stablediffusion-infinity**: Outpainting with Stable Diffusion on an infinite canvas: [https://github.com/lkwq007/stablediffusion-infinity](https://github.com/lkwq007/stablediffusion-infinity)
""",
elem_id="markdown",
)
# frame
frame = gr.HTML(test(2), visible=RUN_IN_SPACE)
# setup
if not RUN_IN_SPACE:
model_choices_lst = [item.value for item in ModelChoice]
if args.local_model:
model_path_input_val = args.local_model
# model_choices_lst.insert(0, "local_model")
elif args.remote_model:
model_path_input_val = args.remote_model
# model_choices_lst.insert(0, "remote_model")
with gr.Row(elem_id="setup_row"):
with gr.Column(scale=4, min_width=350):
token = gr.Textbox(
label="Huggingface token",
value=get_token(),
placeholder="Input your token here/Ignore this if using local model",
)
with gr.Column(scale=3, min_width=320):
model_selection = gr.Radio(
label="Choose a model type here",
choices=model_choices_lst,
value=ModelChoice.INPAINTING.value if onnx_available else ModelChoice.INPAINTING2.value,
)
with gr.Column(scale=1, min_width=100):
canvas_width = gr.Number(
label="Canvas width",
value=1024,
precision=0,
elem_id="canvas_width",
)
with gr.Column(scale=1, min_width=100):
canvas_height = gr.Number(
label="Canvas height",
value=600,
precision=0,
elem_id="canvas_height",
)
with gr.Column(scale=1, min_width=100):
selection_size = gr.Number(
label="Selection box size",
value=256,
precision=0,
elem_id="selection_size",